Farming in the Era of Internet of Things: An Information System Architecture for Smart Farming

Bibtex

Cite as text

						@Select Types{,
							 
							 
							 
							 
							 
							Journal   = "Band-2",
							 Title= "Farming in the Era of Internet of Things: An Information System Architecture for Smart Farming", 
							Author= "Gero Strobel", 
							Doi= "https://doi.org/10.30844/wi_2020_x1-strobel", 
							 Abstract= "The Internet of Things and associated smart products are finding application in evermore domains. Within agriculture it is described under the term smart farming. Using smart products allows farmers to automatically record relevant information, monitor operating procedures or remotely control machines. To make these capabilities usable for added value, not only smart products but entire information systems that align to the domain and its requirements are necessary. Within the literature, various architectures can be found already. However, many lack a methodical foundation or an abstraction of application cases and technology. Against this background, the article presents an information system architecture independent of application cases or technology and oriented toward the domain of smart farming. Starting point of the development is a systematic literature review, based on Webster and Watson [1] in combination with Vom Brocke [2, 3], based on 18 existing architecture approaches that are analyzed and aggregated.

", 
							 Keywords= "Smart Farming, Internet of Things, Information System Architecture, Information Systems, Systematic Literature Review.
", 
							}
					
Gero Strobel: Farming in the Era of Internet of Things: An Information System Architecture for Smart Farming. Online: https://doi.org/10.30844/wi_2020_x1-strobel (Abgerufen 03.02.23)

Abstract

Abstract

The Internet of Things and associated smart products are finding application in evermore domains. Within agriculture it is described under the term smart farming. Using smart products allows farmers to automatically record relevant information, monitor operating procedures or remotely control machines. To make these capabilities usable for added value, not only smart products but entire information systems that align to the domain and its requirements are necessary. Within the literature, various architectures can be found already. However, many lack a methodical foundation or an abstraction of application cases and technology. Against this background, the article presents an information system architecture independent of application cases or technology and oriented toward the domain of smart farming. Starting point of the development is a systematic literature review, based on Webster and Watson [1] in combination with Vom Brocke [2, 3], based on 18 existing architecture approaches that are analyzed and aggregated.

Keywords

Schlüsselwörter

Smart Farming, Internet of Things, Information System Architecture, Information Systems, Systematic Literature Review.

References

Referenzen

1. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: Writing a literature review. MIS quarterly, xiii–xxiii (2002)
2. Vom Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., Cleven, A.: Reconstructing the giant: On the importance of rigour in documenting the literature search process. In: Proceeding of the 17th European Conference on Information Systems, pp. 2206–2217 (2009)
3. Vom Brocke, J., Simons, A., Riemer, K., Niehaves, B., Plattfaut, R., Cleven, A.: Standing on the Shoulders of Giants: Challenges and Recommendations of Literature Search in Information Systems Research. CAIS 37, 9 (2015)
4. Porter, M.E., Heppelmann, J.E.: How smart, connected products are transforming competition. Harvard business review 92, 64–88 (2014)
5. Georgakopoulos, D., Jayaraman, P.P.: Internet of things: from internet scale sensing to smart services. Computing 98, 1041–1058 (2016)
6. Medina-Borja, A.: Editorial Column—Smart Things as Service Providers: A Call for Convergence of Disciplines to Build a Research Agenda for the Service Systems of the Future. Service Science 7, ii–v (2015)
7. Braun, A.-T., Colangelo, E., Steckel, T.: Farming in the Era of Industrie 4.0. Procedia CIRP 72, 979–984 (2018)
8. Walter, A., Finger, R., Huber, R., Buchmann, N.: Opinion: Smart farming is key to developing sustainable agriculture. Proceedings of the National Academy of Sciences of the United States of America 114, 6148–6150 (2017)
9. Cadavid, H., Garzón, W., Pérez, A., López, G., Mendivelso, C., Ramírez, C.: Towards a Smart Farming Platform: From IoT-Based Crop Sensing to Data Analytics. In: Serrano C., J.E., Martínez-Santos, J.C. (eds.) Advances in Computing, 885, pp. 237–251. Springer International Publishing, Cham (2018)
10. Khan, F.A., Adamu Abubakar, M.M., Al-Khasawneh, M.A., Alarood, A.A.: Cotton Crop Cultivation Oriented Semantic Framework Based on IoT Smart Farming Application. International Journal of Engineering and Advanced Technology 8, 480–484 (2019)
11. Ray, P.P.: Internet of things for smart agriculture: Technologies, practices and future direction. AIS 9, 395–420 (2017)
12. Ibayashi, H., Kaneda, Y., Imahara, J., Oishi, N., Kuroda, M., Mineno, H.: A Reliable Wireless Control System for Tomato Hydroponics. Sensors (Basel, Switzerland) 16 (2016)
13. Weiser, M.: The Computer for the 21 st Century. Scientific american 265, 94–105 (1991)
14. Brynjolfsson, E., McAfee, A.: The second machine age. Work, progress, and prosperity in a time of brilliant technologies. Norton, New York, NY (2014)
15. Ashton, K., others: That ‘internet of things’ thing. RFID journal 22, 97–114 (2009)
16. Gill, H.: A continuing vision: Cyber-physical systems. In: Fourth Annual Carnegie Mellon Conference on the Electricity Industry (2008)
17. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A survey. Computer Networks 54, 2787–2805 (2010)
18. Drossel, W.-G., Ihlenfeldt, S., Langer, T., Dumitrescu, R.: Cyber-Physische Systeme. In: Neugebauer, R. (ed.) Digitalisierung, 105, pp. 197–222. Springer Berlin Heidelberg, Berlin, Heidelberg (2018)
19. Beverungen, D., Müller, O., Matzner, M., Mendling, J., Vom Brocke, J.: Conceptualizing smart service systems. Electron Markets 29, 7–18 (2019)
20. Fleisch, E., Weinberger, M., Wortmann, F.: Geschäftsmodelle im Internet der Dinge. Schmalenbachs Z betriebswirtsch Forsch 67, 444–465 (2015)
21. Verma, S., Gala, R., Madhavan, S., Burkule, S., Chauhan, S., Prakash, C.: An Internet of Things (IoT) Architecture for Smart Agriculture. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1–4. IEEE (2018 – 2018)
22. Zamora-Izquierdo, M.A., Santa, J., Martínez, J.A., Martínez, V., Skarmeta, A.F.: Smart farming IoT platform based on edge and cloud computing. Biosystems Engineering 177, 4–17 (2019)
23. Lutz, K.J.: Digitalisierung der Landwirtschaft: Revolution mit evolutionärem Charakter. In: Hildebrandt, A., Landhäußer, W. (eds.) CSR und Digitalisierung, pp. 429–442. Springer Berlin Heidelberg, Berlin, Heidelberg (2017)
24. Zhang, N., Wang, M., Wang, N.: Precision agriculture—a worldwide overview. Computers and Electronics in Agriculture 36, 113–132 (2002)
25. Cambra, C., Sendra, S., Lloret, J., Lacuesta, R.: Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming. Sensors (Basel, Switzerland) 18 (2018)
26. Köksal, Ö., Tekinerdogan, B.: Architecture design approach for IoT-based farm management information systems. Precision Agric 17, 2347 (2018)
27. Haschberger, P., Israel, M.: System und Verfahren zur Rehkitzrettung während der Grünlandmahd. Schlussbericht (2016)
28. Wolfert, S., Goense, D., Sorensen, C.A.G.: A Future Internet Collaboration Platform for Safe and Healthy Food from Farm to Fork. In: 2014 Annual SRII Global Conference, pp. 266–273. IEEE (2014 – 2014)
29. Hansen, H.R., Neumann, G., Mendling, J.: Wirtschaftsinformatik. Grundlagen und anwendungen. De Gruyter, Berlin, Germany (2015)
30. Kurbel, K.: Enterprise resource planning and supply chain management. Functions, business processes and software for manufacturing companies. Springer, Dordrecht (2013)
31. Kurbel, K.: Enterprise Resource Planning und Supply Chain Management in der Industrie. Von MRP bis Industrie 4.0. De Gruyter, Berlin/Boston (2016)
32. Laudon, K.C., Laudon, J.P.: Management information systems : managing the digital firm. Pearson, Harlow, England (2020)
33. Bocij, P., Greasley, A., Hickie, S.: Business information systems. Technology, development and management for the modern business. Pearson, Harlow, England (2019)
34. Hildebrand, K.: Informationsmanagement. Wettbewerbsorientierte Informationsverarbeitung mit Standard-Software und Internet. Oldenbourg Wissenschaftsverlag, Berlin, Boston (2018)
35. Schwarzer, B., Krcmar, H.: Wirtschaftsinformatik. Grundlagen betrieblicher Informationssysteme. Schäffer-Poeschel Verlag, Stuttgart, Germany (2014)
36. Sinz, E.J.: Architektur betrieblicher Informationssysteme. Otto-Friedrich-Univ, Bamberg (1997)
37. Krcmar, H.: Bedeutung und Ziele von Informationssystem-Architekturen. Wirtschaftsinformatik 32, 395–402 (1990)
38. Hafner, M.: Entwicklung eines Zielsystems für ein systemisch-evolutionäres Management der IS-Architektur im Unternehmen. In: Schelp, J., Winter, R. (eds.) Integrationsmanagement, 1, pp. 61–97 (2006)
39. Winter, R., Fischer, R.: Essential Layers, Artifacts, and Dependencies of Enterprise Architecture. In: 10 IEEE International Enterprise Distributed Object Computing Conference (EDOC 2006) (2006)
41. Liu, J.: Design and Implementation of an Intelligent Environmental-Control System: Perception, Network, and Application with Fused Data Collected from Multiple Sensors in a Greenhouse at Jiangsu, China. International Journal of Distributed Sensor Networks 12, 5056460 (2016)
42. Carpio, F., Jukan, A., Sanchez, A.I.M., Amla, N., Kemper, N.: Beyond Production Indicators. In: Unknown (ed.) Proceedings of the Fourth International Conference on Animal-Computer Interaction – ACI2017, pp. 1–11. ACM Press, New York, New York, USA (2017)
43. Colezea, M., Musat, G., Pop, F., Negru, C., Dumitrascu, A., Mocanu, M.: CLUeFARM: Integrated web-service platform for smart farms. Computers and Electronics in Agriculture 154, 134–154 (2018)
44. Schiller, B., Brogt, T., Schuler, P.M., Strobel, G.: Can Self-Tracking Solutions Help with Understanding Quality of Smart, Connected Products? In: 26th European Conference on Information Systems: Beyond Digitization – Facets of Socio-Technical Change, ECIS 2018, Portsmouth, UK, June 23-28, 2018, p. 6 (2018)
45. Lopez-Morales, J.A., Skarmeta, A.F., Martinez, J.A.: An interoperable platform for the digital transformation of the agricultural sector. In: 2019 Global IoT Summit (GIoTS), pp. 1–6. IEEE (2019 – 2019)
46. Li, X.-h., Cheng, X., Yan, K., Gong, P.: A monitoring system for vegetable greenhouses based on a wireless sensor network. Sensors (Basel, Switzerland) 10, 8963–8980 (2010)
47. Ferrández-Pastor, F.J., García-Chamizo, J.M., Nieto-Hidalgo, M., Mora-Pascual, J., Mora-Martínez, J.: Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture. Sensors (Basel, Switzerland) 16 (2016)
48. Debauche, O., El Moulat, M., Mahmoudi, S., Manneback, P., Lebeau, F.: Irrigation pivot-center connected at low cost for the reduction of crop water requirements. In: 2018 International Conference on Advanced Communication Technologies and Networking (CommNet), pp. 1–9. IEEE (2018 – 2018)
49. Koshy, S.S., Sunnam, V.S., Rajgarhia, P., Chinnusamy, K., Ravulapalli, D.P., Chunduri, S.: Application of the internet of things (IoT) for smart farming: a case study on groundnut and castor pest and disease forewarning. CSIT 6, 311–318 (2018)
50. Raikar, M.M., Desai, P., Kanthi, N., Bawoor, S.: Blend of Cloud and Internet of Things (IoT) in agriculture sector using lightweight protocol. In: 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 185–190. IEEE (2018 – 2018)
51. Mocanu, M., Cristea, V., Negru, C., Pop, F., Ciobanu, V., Dobre, C.: Cloud- Based Architecture for Farm Management. In: 20th International Conference on Control Systems and Computer Science, pp. 814–819. IEEE (2015 – 2015)
52. Kruize, J.W., Wolfert, J., Scholten, H., Verdouw, C.N., Kassahun, A., Beulens, A.J.M.: A reference architecture for Farm Software Ecosystems. Computers and Electronics in Agriculture 125, 12–28 (2016)
53. Paukstadt, U., Strobel, G., Eicker, S.: UNDERSTANDING SERVICES IN THE ERA OF THE INTERNET OF THINGS: A SMART SERVICE TAXONOMY. In: AIS (ed.) Proceedings of the 27th European Conference on Information Systems (ECIS). Stockholm (2019)
54. Yu, E., Sangiorgi, D.: Service Design as an Approach to Implement the Value Cocreation Perspective in New Service Development. 10946705 21, 40–58 (2018)
55. Egham, U.K.: Gartner Says 8.4 Billion Connected “Things” Will Be in Use in 2017, Up 31 Percent From 2016, https://gtnr.it/2t6wcd
56. Nickerson, R.C., Varshney, U., Muntermann, J.: A method for taxonomy development and its application in information systems. European Journal of Information Systems 22, 336–359 (2013)
57. Wünderlich, N.V., Heinonen, K., Ostrom, A.L., Patricio, L., Sousa, R., Voss, C., Lemmink, J.G.A.M.: “Futurizing” smart service: implications for service researchers and managers. Journal of Services Marketing 29, 442–447 (2015)
58. Wünderlich, N.V., Wangenheim, F.v. and Bitner, M.J.: High Tech and High Touch: A Framework for Understanding User Attitudes and Behaviors Related to Smart Interactive Services. SAGE PublicationsSage CA: Los Angeles, CA. 10946705 16 (2013)

Most viewed articles

Meist angesehene Beiträge

GITO events | library.gito