Personal Productivity Management in the Digital Age: Measures from Research and Use of Conventional Tools

Bibtex

Cite as text

						@Select Types{,
							 
							 
							 
							 
							 
							Journal   = "Band-1",
							 Title= "Personal Productivity Management in the Digital Age: Measures from Research and Use of Conventional Tools", 
							Author= "Fabienne Lambusch, Oliver Weigelt, Michael Fellmann, Sophia Hein, and Michael Poppe", 
							Doi= "https://doi.org/10.30844/wi_2020_f5-lambusch", 
							 Abstract= "In view of the ongoing alarming numbers of incapacity to work due to mental illness, it is important to pay attention to the factors that maintain long-term productivity of the individual. Recent research is concerned with examining relevant parameters that are measurable through technology and play a role for recognizing productivity factors such as cognitive performance or stress. However, in practice there are constraints regarding the available data sources and motives of people to use tools for self-tracking and management. In this article, we first present results from a literature review on productivity measures from research and then, complement it with initial results from an online questionnaire, which asked for the use of conventional tools by individuals. Besides frequencies of usage, we highlight major drivers for people to use applications for collecting data and managing oneself.

", 
							 Keywords= "productivity, measurement, literature review, survey, application usage.", 
							}
					
Fabienne Lambusch, Oliver Weigelt, Michael Fellmann, Sophia Hein, and Michael Poppe: Personal Productivity Management in the Digital Age: Measures from Research and Use of Conventional Tools. Online: https://doi.org/10.30844/wi_2020_f5-lambusch (Abgerufen 26.12.24)

Abstract

Abstract

In view of the ongoing alarming numbers of incapacity to work due to mental illness, it is important to pay attention to the factors that maintain long-term productivity of the individual. Recent research is concerned with examining relevant parameters that are measurable through technology and play a role for recognizing productivity factors such as cognitive performance or stress. However, in practice there are constraints regarding the available data sources and motives of people to use tools for self-tracking and management. In this article, we first present results from a literature review on productivity measures from research and then, complement it with initial results from an online questionnaire, which asked for the use of conventional tools by individuals. Besides frequencies of usage, we highlight major drivers for people to use applications for collecting data and managing oneself.

Keywords

Schlüsselwörter

productivity, measurement, literature review, survey, application usage.

References

Referenzen

1. Parent-Thirion, A., Biletta, I., Cabrita, J., Llave Vargas, O., Vermeylen, G., Wilczynska, A., Wilkens, M.: 6th European Working Conditions Survey. Overview report (2017)
2. Béjean, S., Sultan-Taïeb, H.: Modeling the economic burden of diseases imputable to stress at work. H. Eur J Health Econ 6, 16–23 (2005)
3. Drucker, P.F.: Knowledge-Worker Productivity: The Biggest Challenge. California Management Review 41, 79–94 (1999)
4. Gurrin, C., Smeaton, A.F., Doherty, A.R.: LifeLogging: Personal Big Data. FNT in Information Retrieval 8, 1–125 (2014)
5. Sarker, H., Hovsepian, K., Chatterjee, S., Nahum-Shani, I., Murphy, S.A., Spring, B., Ertin, E., al’Absi, M., Nakajima, M., Kumar, S.: From Markers to Interventions: The Case of Just-in-Time Stress Intervention. In: Mobile Health. Sensors, Analytic Methods, and Applications, 34, pp. 411–433. Springer International Publishing, Cham (2017)
6. Lazar, A., Koehler, C., Tanenbaum, J., Nguyen, D.H.: Why we use and abandon smart devices. In: UbiComp ‘15, pp. 635–646. ACM, New York, NY (2015)
7. Harrison, D., Marshall, P., Bianchi-Berthouze, N., Bird, J.: Activity tracking. In: UbiComp‘15, pp. 617–621. ACM, New York, NY (2015)
8. Poppe, M., Lambusch, F., Fellmann, M., Lichtwark, M.: IT-unterstützte Datenerfassung zur Ableitung persönlicher Produktivitätsfaktoren: eine systematische Literaturanalyse. In: Mensch und Computer 2019 (2019)
9. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Reviews in Software Engineering. Technical report, Ver. 2.3 EBSE Technical Report (2007)
10. Tsunoda, K., Chiba, A., Yoshida, K., Watanabe, T., Mizuno, O.: Predicting changes in cognitive performance using heart rate variability. In: IEICE Transactions on Information and Systems, vol. E100D, pp. 2411–2419 (2017)
11. Yano, K., Akitomi, T., Ara, K., Watanabe, J., Tsuji, S., Sato, N, Hayakawa, M., Moriwaki, N: Measuring happiness using wearable technology: Technology for boosting productivity in knowledge work and service businesses. Hitachi Review 64, 517–524 (2015)
12. Webster, J., Watson, R.T.: Analyzing the Past to Prepare the Future: Writing a Literature Review. MIS Quarterly (2002)
13. Anusha, A.S., Jose, J., Preejith, S.P., Jayaraj, J., Mohanasankar, S.: Physiological signal based work stress detection using unobtrusive sensors. BPEX 4, 65001 (2018)
14. Yoo, H., Chung, K.: Mining-based lifecare recommendation using peer-to-peer dataset and adaptive decision feedback. Peer-to-Peer Netw. Appl. 11, 1309–1320 (2018)
15. Berelson, K., Simini, F., Tryfonas, T., Cooper, P.: Sensor-Based Smart Hot-Desking for Improvement of Office Well-Being. In: DTUC’18, pp. 1–9. ACM, New York (2018)
16. Di Lascio, E.: Emotion-Aware Systems for Promoting Human Well-being. In: UbiComp/ISWC’18 adjunct, pp. 529–534. ACM, New York (NY) (2018)
17. Gloor, P.A., Colladon, A.F., Grippa, F., Budner, P., Eirich, J.: Aristotle Said “Happiness is a State of Activity” — Predicting Mood Through Body Sensing with Smartwatches. J. Syst. Sci. Syst. Eng. 27, 586–612 (2018)
18. Jebelli, H., Hwang, S., Lee, S.: EEG-based workers’ stress recognition at construction sites. Automation in Construction 93, 315–324 (2018)
19. Jebelli, H., Khalili, M.M., Hwang, S., Lee, S.: A Supervised Learning-Based Construction Workers’ Stress Recognition Using a Wearable Electroencephalography (EEG) Device. In: Construction Research Congress, pp. 40–50. American Society of Civil Engineers (2018)
20. Jebelli, H., Khalili, M.M., Lee, S.: A Continuously Updated, Computationally Efficient Stress Recognition Framework Using Electroencephalogram (EEG) by Applying Online Multi-Task Learning Algorithms (OMTL). IEEE J-BHI (2018)
21. Özsever, B., Tavacıoğlu, L.: Analysing the effects of working period on psychophysiological states of seafarers. International maritime health 69, 84–93 (2018)
22. Rodrigues, S., Paiva, J.S., Dias, D., Aleixo, M., Filipe, R.M., Cunha, J.P.S.: Cognitive Impact and Psychophysiological Effects of Stress Using a Biomonitoring Platform. International journal of environmental research and public health 15 (2018)
23. Sanchez, W., Martinez, A., Hernandez, Y., Estrada, H., Gonzalez-Mendoza, M.: A predictive model for stress recognition in desk jobs. JAIHC 6, 37 (2018)
24. Canazei, M., Pohl, W., Bliem, H.R., Weiss, E.M.: Acute effects of different light spectra on simulated night-shift work without circadian alignment. Chronobiology International 34, 303–317 (2017)
25. Sanchez, W., Martinez, A., Gonzalez, M.: Towards job stress recognition based on behavior and physiological features. In: UCAmI, vol. 10586 LNCS, pp. 311–322 (2017)
26. Chang, K.-M., Chun, Y.-T., Chen, S.-H., Lu, L., Su, H.-T.J., Liang, H.-M., Santhosh, J., Ching, C.T.-S., Liu, S.-H.: The evaluation of physical stillness with wearable chest and arm accelerometer during Chan ding practice. Sensors (Switzerland) 16 (2016)
27. Mark, G., Iqbal, S.T., Czerwinski, M., Johns, P., Sano, A., Lutchyn, Y.: Email Duration, Batching and Self-interruption. Patterns of Email Use on Productivity and Stress. In: CHI‘16, pp. 1717–1728. ACM, New York, NY (2016)
28. Nakashima, Y., Kim, J., Flutura, S., Seiderer, A., André, E.: Stress recognition in daily work. In: MindCare 2015, 604, pp. 23–33. Springer (2016)
29. Schwartz, B., Kapellusch, J.M., Schrempf, A., Probst, K., Haller, M., Baca, A.: Effect of a novel two-desk sit-to-stand workplace (ACTIVE OFFICE) on sitting time, performance and physiological parameters: Protocol for a randomized control trial. BMC Public Health 16 (2016)
30. Tsuji, S., Omori, H., Samejima, K., Yano, K.: Use of human big data to help improve productivity in service businesses. Hitachi Review 65, 847–852 (2016)
31. Tsunoda, K., Chiba, A., Chigira, H., Yoshida, K., Watanabe, T., Mizuno, O.: Online estimation of a cognitive performance using heart rate variability. In: IEEE EMBS, vol. 2016-October, pp. 761–765 (2016)
32. Tsunoda, K., Chiba, A., Chigira, H., Ura, T., Mizunq, O.: Estimating changes in a cognitive performance using heart rate variability. In: IEEE BIBE (2015)
33. Yano, K., Akitomi, T., Ara, K., Watanabe, J., Tsuji, S., Sato, N., Hayakawa, M., Moriwaki, N.: Profiting from IoT: The key is very-large-scale happiness integration. In: Digest of Technical Papers – Symposium on VLSI Technology, C24-C27 (2015)
34. Thielmann, B., Weippert, M., Wilke, M., Bockelmann, I.: Abhängigkeit kognitiver Leistungen und Kardioreaktivität von der Ausprägung des Vegetativums. Arbeitsmedizin Sozialmedizin Umweltmedizin 49, 293–299 (2014)
35. Jiang, Y., Li, K., Piedrahita, R., Xiang, Y., Tian, L., Mansata, O., Lv, Q., Dick, R.P., Hannigan, M., Shang, L.: User-centric indoor air-quality monitoring on mobile devices. AI Magazine 34, 11–30 (2013)
36. Muaremi, A., Arnrich, B., Tröster, G.: Towards Measuring Stress with Smartphones and Wearable Devices During Workday and Sleep. BioNanoScience 3, 172–183 (2013)
37. Teso, S., Staiano, J., Lepri, B., Passerini, A., Pianesi, F.: Ego-centric graphlets for personality and affective states recognition. In: IEEE SocialCom, pp. 874–877 (2013)
38. DiDomenico, A., Nussbaum, M.A.: Effects of different physical workload parameters on mental workload and performance. Intern. J. of Industrial Ergonomics 41, 255–260 (2011)
39. Hernandez, J., Morris, R.R., Picard, R.W.: Call center stress recognition with personspecific models. In: ACII, vol. 6974 LNCS, pp. 125–134. Memphis, TN (2011)
40. Prinsloo, G.E., Rauch, H.G.L., Lambert, M.I., Muench, F., Noakes, T.D., Derman, W.E.: The effect of short duration heart rate variability (HRV) biofeedback on cognitive performance during laboratory induced cognitive stress. Appl Cog Psy 25, 792–801 (2011)
41. Seigneur, J-M: The emotional economy for the augmented human. In: ACM AH’11 (2011)
42. Setz, C., Arnrich, B., Schumm, J., La Marca, R., Tröster, G., Ehlert, U.: Discriminating stress from cognitive load using a wearable eda device. IEEE T-ITB 14, 410–417 (2010)
43. Bateman, T.S., Crant, J.M.: The proactive component of organizational behavior: A measure and correlates. J Organ Behav 14, 103–118 (1993)
44. Frost, R.O., Marten, P., Lahart, C., Rosenblate, R.: The dimensions of perfectionism. Cognitive Therapy and Research 14, 449–468 (1990)
45. Marchewka, J.T., Kostiwa, K.: An Application of the UTAUT Model for Understanding Student Perceptions Using Course Management Software. Commun of the IIMA 7 (2007)
46. Seibert, S.E., Crant, J.M., Kraimer, M.L.: Proactive personality and career success. J Appl Psychol 84, 416–427 (1999)
47. Altstötter-Gleich, C., Bergemann, N.: Testgüte einer deutschsprachigen Version der Mehrdimensionalen Perfektionismus Skala von Frost, Marten, Lahart und Rosenblate (MPS-F). Diagnostica 52, 105–118 (2006)

Most viewed articles

Meist angesehene Beiträge

GITO events | library.gito