Bibtex
Cite as text
@Select Types{,
Journal = "Band-1",
Title= "Development of a Conceptual Framework for Machine Learning Applications in Brick-and-Mortar Stores",
Author= "Jörg Becker, Kilian Müller, Ann-Kristin Cordes, Patrick Hartmann, and Lasse von Lojewski",
Doi= "https://doi.org/10.30844/wi_2020_c2-becker",
Abstract= "The growing prevalence and impact of e-commerce puts traditional brick-and-mortar stores under pressure. More and more customers prefer the variety of goods, easily comparable prices, and personalized recommendations online to conventional shopping experiences in stationary retail. A major asset of online stores is their potential to collect, analyze, and interpret data. The collection and analysis of customer behavior and transaction data to improve website design, the assortment, and pricing strategies so-called ‘web analytics’ are common practice in e-commerce for more than fifteen years already. Advancements in technologies and the ongoing digitalization of brickand- mortar stores unveil the potential of Retail Analytics for conventional stores as well. Yet, a structured overview of diverse factors relevant for implementing Retail Analytics is missing. In light of this context, this article derives a conceptual framework harmonizing the relations between different technologies, collected data, analysis methods, method outputs, and application purposes.
",
Keywords= "Retail Analytics, Machine Learning, Brick-and-Mortar-Stores, Stationary Retail.",
}
Jörg Becker, Kilian Müller, Ann-Kristin Cordes, Patrick Hartmann, and Lasse von Lojewski: Development of a Conceptual Framework for Machine Learning Applications in Brick-and-Mortar Stores. Online: https://doi.org/10.30844/wi_2020_c2-becker (Abgerufen 23.11.24)
Open Access
The growing prevalence and impact of e-commerce puts traditional brick-and-mortar stores under pressure. More and more customers prefer the variety of goods, easily comparable prices, and personalized recommendations online to conventional shopping experiences in stationary retail. A major asset of online stores is their potential to collect, analyze, and interpret data. The collection and analysis of customer behavior and transaction data to improve website design, the assortment, and pricing strategies so-called ‘web analytics’ are common practice in e-commerce for more than fifteen years already. Advancements in technologies and the ongoing digitalization of brickand- mortar stores unveil the potential of Retail Analytics for conventional stores as well. Yet, a structured overview of diverse factors relevant for implementing Retail Analytics is missing. In light of this context, this article derives a conceptual framework harmonizing the relations between different technologies, collected data, analysis methods, method outputs, and application purposes.
Retail Analytics, Machine Learning, Brick-and-Mortar-Stores, Stationary Retail.
1. Eisert, R., Hohensee, M.: Leere Innenstädte durch Online-Handel?, https://www.wiwo.de/unternehmen/handel/bezos-vision-leere-innenstaedte-durchonline- handel/7805132-4.html
2. Wörrle, J.: Leere Innenstädte: Mythos oder Zukunft?, https://www.deutschehandwerks- zeitung.de/leere-innenstaedte-mythos-oder-zukunft/150/3092/271064
3. Dierig, C.: Deutschlands Innenstädte drohen zu veröden, https://www.welt.de/wirtschaft/article165248634/Deutschlands-Innenstaedte-drohenzu- veroeden.html
4. Gerl, M.: Wie das Leben aus Bayerns Innenstädten verschwindet, https://www.sueddeutsche.de/bayern/stadtentwicklung-die-lehre-aus-der-leere-
1.3690635
5. Statista: Retail e-commerce sales worldwide from 2014 to 2021
6. Statista: E-commerce share of total global retail sales from 2015 to 2021, https://www.statista.com/statistics/534123/e-commerce-share-of-retail-salesworldwide/
7. Verhoef, P.C., Kannan, P.K., Inman, J.J.: From Multi-Channel Retailing to Omni- Channel Retailing. Introduction to the Special Issue on Multi-Channel Retailing. J. Retail. 91, 174–181 (2015). doi:10.1016/j.jretai.2015.02.005
8. Devaraj, S., Fan, M., Kohli, R.: Antecedents of B2C channel satisfaction and preference: Validating e-commerce metrics. Inf. Syst. Res. 13, 316–333 (2002). doi:10.1287/isre.13.3.316.77
9. Davenport, T.H.: Competing on analytics, https://sites.google.com/site/dreamznpassions/competing_on_analytics.pdf, (2006)
10. Bollweg, L., Lackes, R., Siepermann, M., Weber, P.: In-Store Customer Analytics – Metriken & Reifegradszenarien zur Erfassung physischer Kundenkontakte im stationären Einzelhandel. In: Lecture Notes in Informatics (LNI), Proceedings – Series of the Gesellschaft fur Informatik (GI). pp. 327–341 (2016)
11. Vom Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., Cleven, A.: Reconstructing the giant: On the importance of rigour in documenting the literature search process. In: 17th European Conference on Information Systems, ECIS 2009 (2009)
12. Fettke, P.: Eine Methode zur induktiven Entwicklung von Referenzmodellen. In: Multikonferenz Wirtschaftsinformatik. pp. 1034–1047 (2014)
13. Cox, E.: Retail Analytics: The Secret Weapon. Wiley (2011)
14. Sachs, A.-L.: Retail Analytics: Integrated Forecasting and Inventory Management for Perishable Products in Retailing. Springer International Publishing (2015)
15. CollinsDictionary.com: Retail analytics – Definition and Meaning
16. Technologies, H.: What is Retail Analytics?, https://www.hcltech.com/de/node/141578
17. Siepermann, M.: Business Analytics, https://wirtschaftslexikon.gabler.de/definition /business-analytics-54504/version-277533
18. Golderzahi, V., Pao, H.K.: Understanding customers and their grouping via wifi sensing for business revenue forecasting. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 56–71 (2018)
19. Cil, I.: Consumption universes based supermarket layout through association rule mining and multidimensional scaling. Expert Syst. Appl. 39, 8611–8625 (2012). doi:10.1016/j.eswa.2012.01.192
20. Zikopoulos, P., Deroos, D., Parasuraman, K., Deutsch, T., Giles, J., Corrigan, D.: Harness the power of big data The IBM big data platform. McGraw Hill Professional (2012)
21. Borana, J.: Applications of Artificial Intelligence & Associated Technologies. Sci. [ETEBMS-2016]. 5, 5–6 (2016). doi:10.1016/s0004-3702(99)00086-7
22. Sathya, R., Abraham, A.: Comparison of Supervised and Unsupervised Learning Algorithms for Pattern Classification. Int. J. Adv. Res. Artif. Intell. 2, (2013). doi:10.14569/ijarai.2013.020206
23. Chang, Z., Lei, L., Zhou, Z., Mao, S., Ristaniemi, T.: Learn to Cache: Machine Learning for Network Edge Caching in the Big Data Era. IEEE Wirel. Commun. 25, 28–35 (2018). doi:10.1109/MWC.2018.1700317
24. Kumari, A., Prasad, U., Bala, P.K.: Retail Forecasting using Neural Network and Data Mining Technique: A Review and Reflection. Int. J. Emerg. Trends Technol. Comput. Sci. 2, 266–269 (2013)
25. Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O.P., Tiwari, A., Er, M.J., Ding, W., Lin, C.T.: A review of clustering techniques and developments. Neurocomputing. 267, 664–681 (2017). doi:10.1016/j.neucom.2017.06.053
26. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv. 41, 15 (2009)
27. Agrawal, R., Imieliński, T., Swami, A.: Mining Association Rules Between Sets of Items in Large Databases. ACM SIGMOD Rec. 22, 207–216 (1993). doi:10.1145/170036.170072
28. Yabing, J.: Research of an Improved Apriori Algorithm in Data Mining Association Rules. Int. J. Comput. Commun. Eng. 2, 25–27 (2013). doi:10.7763/ijcce.2013.v2.128
29. Jolliffe, I.: Principal component analysis. (2011)
30. Borg, I., Groenen, P.: Modern Multidimensional Scaling : Theory and Applications. J. Educ. Meas. 40, 277–280 (2003)
31. Shao, J., Ahmadi, Z., Kramer, S.: Prototype-based learning on concept-drifting data streams. Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. 412–421 (2014). doi:10.1145/2623330.2623609
32. Liu, L., Sheridan, D., Tuohy, W., Vasudevan, S.: A technique for test coverage closure using goldmine. IEEE Trans. Comput. Des. Integr. Circuits Syst. 31, 790–803 (2012). doi:10.1109/TCAD.2011.2177461
33. Efron, B.: Bayes ’ Theorem in the 21st Century. Science (80-. ). 340, 1177–1179 (2013)
34. Bishop, C.M.: Pattern recognition and machine learning. Springer Science+ Business Media (2006)
35. Singh, A.K., Leech, C., Reddy, B.K., Al-Hashimi, B.M., Merrett, G. V.: Learningbased run-Time power and energy management of Multi/Many-Core Systems: Current and future trends. J. Low Power Electron. 13, 310–325 (2017). doi:10.1166/jolpe.2017.1492
36. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. J. Artif. Intell. Res. 4, 237–285 (1996)
37. Duro, D.C., Franklin, S.E., Dubé, M.G.: A comparison of pixel-based and objectbased image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 118, 259–272 (2012). doi:10.1016/j.rse.2011.11.020
38. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Li, F.F.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. pp. 1725–1732 (2014)
39. Brown, G.: Ensemble Learning. Encycl. Mach. Learn. 312–320 (2010)
40. Meise, V.: Ordnungsrahmen zur prozessorientierten Organisationsgestaltung: Modelle für das Management komplexer Reorganisationsprojekte. Kovač (2001)
41. Bartelheimer, C., Betzing, J.H., Berendes, I., Beverungen, D.: Designing multi-sided community platforms for local high street retail. In: 26th European Conference on Information Systems: Beyond Digitization – Facets of Socio-Technical Change, ECIS 2018 (2018)
42. Dahm, C., Beverungen, D.: smartmarket2, https://www.smartmarketsquare.de/
43. Betzing, J.H.: Beacon-based customer tracking across the high street: Perspectives for location-based smart services in retail. In: Americas Conference on Information Systems 2018: Digital Disruption, AMCIS 2018 (2018)
44. Akyuz, A.O., Uysal, M., Bulbul, B.A., Uysal, M.O.: Ensemble approach for time series analysis in demand forecasting: Ensemble learning. Proc. – 2017 IEEE Int. Conf. Innov. Intell. Syst. Appl. INISTA 2017. 7–12 (2017). doi:10.1109/INISTA.2017.8001123
45. Chen, C.C.: RFID-based intelligent shopping environment: a comprehensive evaluation framework with neural computing approach. Neural Comput. Appl. 25, 1685–1697 (2014). doi:10.1007/s00521-014-1652-7
46. Chiou-Wei, S.Z., Inman, J.J.: Do Shoppers Like Electronic Coupons?. A Panel Data Analysis. J. Retail. 84, 297–307 (2008). doi:10.1016/j.jretai.2008.07.003
47. Cruz, E., Orts-Escolano, S., Gomez-Donoso, F., Rizo, C., Rangel, J.C., Mora, H., Cazorla, M.: An augmented reality application for improving shopping experience in large retail stores. Virtual Real. 1–11 (2018)
48. Dawes, J., Nenycz-Thiel, M.: Comparing retailer purchase patterns and brand metrics for in-store and online grocery purchasing. J. Mark. Manag. 30, 364–382 (2014). doi:10.1080/0267257X.2013.813576
49. Dholakia, R.R., Zhao, M., Dholakia, N.: Multichannel retailing: A case study of early experiences. J. Interact. Mark. 19, 63–74 (2005). doi:10.1002/dir.20035
50. Epstein, L.D., Flores, A.A., Goodstein, R.C., Milberg, S.J.: A new approach to measuring retail promotion effectiveness: A case of store traffic. J. Bus. Res. 69, 4394–4402 (2016). doi:10.1016/j.jbusres.2016.03.062
51. Frontoni, E., Marinelli, F., Rosetti, R., Zingaretti, P.: Shelf space re-allocation for out of stock reduction. Comput. Ind. Eng. 106, 32–40 (2017). doi:10.1016/j.cie.2017.01.021