Industry 4.0 Science 39, 2023, 8-15
Artificial Muscles and Nerves in Industry 4.0 - Multifunctional Actuator-Sensor Systems with Shape Memory Alloys (SMAs) and Dielectric Elastomers (DEs)

Bibtex

Cite as text

						@Article{Motzki+Hau+Schmidt+Seelecke
,
							Cite-key = "Motzki2023Art", 
							Year= "2023", 
							Number= "1", 
							 Volume= "Industry 4.0 Science 39", 
							Pages= "8-15", 
							Journal   = "Industry 4.0 Science",
							 Title= "Artificial Muscles and Nerves in Industry 4.0 - Multifunctional Actuator-Sensor Systems with Shape Memory Alloys (SMAs) and Dielectric Elastomers (DEs)", 
							Author= "Paul Motzki, Steffen Hau, Marvin Schmidt and Stefan Seelecke,
Saarland University, ZeMA – Center for Mechatronics and Automation Technology gGmbH", 
							Doi= "https://doi.org/10.30844/I4SE.23.1.8", 
							 Abstract= "Within the concepts of Industry 4.0, the term “Smart Factory" stands for the creation of effective production environments through digitalization and cyber-physical systems. Most manufacturers plan to make their manufacturing systems more automated, flexible and adaptive. In the course of these efforts, intelligent materials are increasingly brought into focus. Combined actuator and sensory properties enable the construction of lightweight and compact multifunctional actuator-sensor systems that are operated in an energy-efficient, noise-free and emission-free manner. This makes them appropriate for building networked systems. Shape memory alloys (SMAs) and dielectric elastomers (DEs) are particularly suitable for building intelligent actuators, and are presented in this article alongside several use cases.", 
							 Keywords= "smart materials, shape memory alloys, SMA, dielectric elastomers, DE, electroactive polymers, EAP, robotics, manufacturing, self-sensing alloys, intelligent materials, actuator technology,
actuators", 
							}
					
Paul Motzki, Steffen Hau, Marvin Schmidt and Stefan Seelecke,
Saarland University, ZeMA – Center for Mechatronics and Automation Technology gGmbH(2023): Artificial Muscles and Nerves in Industry 4.0 - Multifunctional Actuator-Sensor Systems with Shape Memory Alloys (SMAs) and Dielectric Elastomers (DEs). Industry 4.0 Science 391(2023), S. 8-15. Online: https://doi.org/10.30844/I4SE.23.1.8 (Abgerufen 04.12.24)

Abstract

Abstract

Within the concepts of Industry 4.0, the term “Smart Factory" stands for the creation of effective production environments through digitalization and cyber-physical systems. Most manufacturers plan to make their manufacturing systems more automated, flexible and adaptive. In the course of these efforts, intelligent materials are increasingly brought into focus. Combined actuator and sensory properties enable the construction of lightweight and compact multifunctional actuator-sensor systems that are operated in an energy-efficient, noise-free and emission-free manner. This makes them appropriate for building networked systems. Shape memory alloys (SMAs) and dielectric elastomers (DEs) are particularly suitable for building intelligent actuators, and are presented in this article alongside several use cases.

Keywords

Schlüsselwörter

smart materials, shape memory alloys, SMA, dielectric elastomers, DE, electroactive polymers, EAP, robotics, manufacturing, self-sensing alloys, intelligent materials, actuator technology, actuators

References

Referenzen

[1] Janocha, H.: Adaptronics and Smart Structures. Basics, Materials, Design, and Applications. Berlin Heidelberg 2007.
[2] Lagoudas, D. C.: Shape Memory Alloys: Modeling and Engineering Applications. New York 2008.
[3] Motzki, P. et al. (2023) ‘Thermische Formgedächtnislegierungen’, in Böse, H. (ed.) Smart Materials – Eigenschaften und Einsatzpotenziale. 1st edn. Würzburg: Vogel Communications Group, pp. 89–118. Available at: https://vogel-fachbuch.de/detail/index/sArticle/1086.
[4] SAES Getters. SmartFlex Brochure 2017. URL: www.saesgetters.com/sites/default/files/SmartFlex Brochure_2.pdf, accessed March 1, 2018.
[5] Dynalloy Inc. Technical Characteristics of Flexinol Actuator Wires 2017. URL: www. dynalloy.com/pdfs/TCF1140. pdf, accessed March 1, 2018.
[6] Janocha, H.: Unkonventionelle Aktoren – Eine Einführung. München 2013.
[7] Hollerbach, J. M.; Hunter, I. W.; Ballantyne, J. A.: Comparative analysis of actuator technologies for robotics. In: The Robotics Review (1992) 2, pp. 299-342.
[8] Motzki, P. et al. (2018) ‘High-Speed and High-Efficiency Shape Memory Alloy Actuation’, Smart Materials and Structures, 27(7), p. 075047. doi: 10.1088/1361-665X/aac9e1.
[9] Actuator Solutions GmbH: Actuator Solutions SMA Products 2018. URL: www.actuatorsolutions.de/products/, accessed March 1, 2018.
[10] Köpfer, M.: Industrialisierung der FGL-Technologie in hochvolumigen Serienprodukt. In: VDI-Expertenforum: Smart Materials – Aus der Forschung in die industrielle Anwendung. Potsdam 2017.
[11] Theiß, R.; Czechowicz, A.; Dültgen, P.: Industry 4.0 using shape memory actuators – opportunities and challenges. In Conference: Actuator 2016. Bremen.
[12] Motzki, P.; Seelecke, S.: Bistabile Aktorvorrichtung mit einem Formgedächtniselement (2016).
[13] Motzki, P.; Seelecke, S.: Bistable Actuator Device Having A Shape Memory Element (2016).
[14] Motzki, P. and Seelecke, S. (2022) ‘Industrial Applications for Shape Memory Alloys’, in Olabi, A.-G. (ed.) Encyclopedia of Smart Materials. Elsevier, pp. 254–266. doi: 10.1016/B978-0-12-803581-8.11723-0.
[15] Motzki, P. and Rizzello, G. (2023) ‘Smart Shape Memory Alloy Actuator Systems and Applications’, in Chowdhury, P. M. A. and Rahman, D. M. M. (eds) Shape Memory Alloys – New Advances. Rijeka: IntechOpen, p. Ch. 0. doi: 10.5772/intechopen.1002632.
[16] Motzki, P. et al. (2019) ‘Design and Validation of a Reconfigurable Robotic End-effector Based on Shape Memory Alloys’, IEEE/ASME Transactions on Mechatronics, 24(1), pp. 293–303.
[17] Simone, F. et al. (2020) ‘A Soft Five-Fingered Hand Actuated by Shape Memory Alloy Wires: Design , Manufacturing , and Evaluation’, Frontiers in Robotics and AI, 7(608841). doi: 10.3389/frobt.2020.608841.
[18] Pelrine, R. E.; Kornbluh, R. D.; Joseph, J. P.: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. In: SensorsandActuatorsA:Physical 64 (1998) 1, pp. 77-85.
[19] Carpi, F.; De Rossi, D.; Kornbluh, R. D.; Pelrine, R. E.; Sommer-Larsen, P.: Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. Amsterdam 2008.
[20] Mateligent GmbH. Mateligent iDEAS – EAP pressure and strech[-sic]/stroke sensor FlexSense Sensor Technology Demonstration [Video]. YouTube. https://www.youtube.com/watch?v=krq7LIUGZ8, accessed Nov 15, 2023.
[21] O’Brien, B.; Gisby, T.; Anderson, I. A.: Stretch sensors for human body motion. In: Proceedings of SPIE 9056 – The International Society for Optical Engineering 2014, p. 905618.
[22] York, A.; Dunn, J.; Seelecke, S.: Systematic approach to development of pressure sensors using dielectric electroactive polymer membranes. In: Smart Materials and Structures 22 (2013) 9, p. 094015.
[23] Koh, S. J. A.; Keplinger, C.; Li, T.; Bauer, S.; Suo, Z.: Dielectric Elastomer Generators: How Much Energy Can Be Converted? In: IEEE/ASME Transactions on Mechatronics 16 (2011) 1, pp. 33-41.
[24] Zanini, P.; Rossiter, J.; Homer, M.: Self-stabilizing dielectric elastomer generators. In: Smart Materials and Structures 26 (2017) 3. S. 035037.
[25] McKay, T. G.; Rosset, S.; Anderson, I. A.; Shea, H. R.: Dielectric elastomer generators that stack up. In: Smart Materials and Structures 24 (2017) 1. S. 015014.
[26] O’Halloran, A.; O’Malley, F.; McHugh, P.: A review on dielectric elastomer actuators, technology, applications, and challenges. In: Journal of Applied Physics 104 (2008) 7, p. 071101.
[27] Pelrine, R. E.; Sommer-Larsen, P.; Kornbluh, R. D.; Heydt, R.; Kofod, G.; Pei, Q. et al.: Applications of dielectric elastomer actuators. In: Bar-Cohen, Y. (ed): Smart structures and materials 2001: Electroactive polymer actuators and devices. Bellingham 2001, pp. 335- 349.
[28] Bar-Cohen, Y.: Electroactive Polymers as Artificial Muscles: Capabilities, Potentials and Challenges. Reston 2000, pp. 188-196.
[29] Maas, J.; Tepel, D.; Hoffstadt, T.: Actuator design and automated manufacturing process for DEAP-based multilayer stack-actuators. In: Meccanica 50 (2015) 11, pp. 2839-2854.
[30] Haus, H.; Matysek, M.; Mößinger, H.; Schlaak, H.F.: Modelling and characterization of dielectric elastomer stack actuators. In: Smart Materials and Structures 22 (2013) 10, p. 104009.
[31] Kovacs, G.; Düring, L.; Michel, S.; Terrasi, G.: Stacked dielectric elastomer actuator for tensile force transmission. In: Sensors and Actuators A: Physical 155 (2009) 2, pp. 299- 307.
[32] Hau, S.; Bruch, D.; Rizzello, G.; Motzki, P.; Seelecke, S.: Silicone based dielectric elastomer strip actuators coupled with non-linear biasing elements for large actuation strains. In: Smart Materials and Structures 27 (2018) 7, p. 074003.
[33] Hau, S.; York, A.; Seelecke, S.: High-Force Dielectric Electro-active Polymer (DEAP) membrane actuator. In: Bar-Cohen, Y; Vidal, F. (ed): Proceedings SPIE 9798, Electroactive Polymer Actuators and Devices (EAPAD). Las Vegas, NV 2016.
[34] Rizzello, G.; Naso, D.; York, A.; Seelecke, S.: Closed loop control of dielectric elastomer actuators based on self-sensing displacement feedback. In: Smart Materials and Structures 25 (2016) 3. S. 035034.
[35] Rosset, S.; O’Brien, B. M.; Gisby, T.; Xu, D.; Shea, H. R.; Anderson, I. A.: Self-sensing dielectric elastomer actuators in closed-loop operation. In: Smart Materials and Structures 22 (2013) 10, p. 104018.
[36] Rosset, S.; de Saint-Aubin, C.; Poulin, A.; Shea, H. R.: Assessing the degradation of compliant electrodes for soft actuators. In: Review of Scientific Instruments 88 (2017) 10, p. 105002.
[37] Hill, M.; Rizzello, G.; Seelecke, S.: Development of a fatigue testing setup for dielectric elastomer membrane actuators. In: Conference: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. Portland, OR 2017.
[38] Matysek, M.; Lotz, P.; Schlaak, H.: Lifetime investigation of dielectric elastomer stack ac- tuators. In: IEEE Transactions on Dielectrics and Electrical Insulation 18 (2011) 1, pp. 89-96.
[39] Optotune, “Products”. URL: www.optotune.com/products, accessed March 1, 2018.
[40] Giousouf, M.; Kovacs, G.: Dielectric Elastomer Actuators Used for Pneumatic Valve Technology. In: Smart Materials and Structures, 22 (2013), pp. 104010–6. DOI: 10.1088/0964-1726/22/10/104010.
[41] Hill, M.; Rizzello, G.; Seelecke, S.: Development and experimental characterization of a pneumatic valve actuated by a dielectric elastomer membrane. In: Smart Materials and Structures 26 (2017) 8, p. 085023.
[42] Bonci, A.; Longhi, S.; Pirani, M.; Lorenzoni, E.; Rizzello, G.; Naso, D.; Seelecke, S.: Simulation Analysis and Performance Evaluation of a Vibratory Feeder Actuated by Dielectric Elastomers. In: The 14th IEEE/ ASME International Conference on Mechatronic and Embedded Systems and Applications. Oulu, Finnland 2018.

Most viewed articles

Meist angesehene Beiträge

GITO events | library.gito