
287

OpenPredict - An Open Research Dataset and Evaluation
Protocol for Fine-grained Predictive Testing

David Brodmann1, Erik Rodner2

Abstract: Systematic testing of every single component and interface is undoubtedly an important
measure to handle the complex nature of current software systems. However, this comes with often
neglected computational costs. The aim of this paper is therefore to cut time and resource needs by
predictive testing, i.e., predicting test failures with machine learning using a surprisingly simple
statistical feature representation. Furthermore, we present the first open research benchmark for pre-
dictive testing to enable and foster future research in this area.

Keywords: machine learning; software testing; research dataset; predictive testing

1	 Introduction

Software testing is crucial for the success of a professional software project. However, with
a growing code complexity, regression testing for changes gets more time and resource
consuming resulting in hours of software tests for evaluating code changes for every new
commit. A time delay, which is simply impractical to handle during development and a
waste of expensive resources. A classical solution to the problem is to track test depen-
dencies and code coverage of each test over time. However, this is time-consuming and
sometimes impossible to achieve especially within heterogeneous repositories with several
language barriers [MSPC19].

Because predictive testing is heavily project dependent, our contribution to the field of
predictive testing is not a new machine learning approach, but rather a curated and open
dataset to allow future comparison and evaluation of predictive testing methods.

1	 DResearch Fahrzeugelektronik, Prüflabor / KI, Spenerstr. 38, 10557 Berlin, Germany,
david.brodmann@luckycloud.de

2	 Hochschule für Technik und Wirtschaft Berlin, Fachbereich 2 / KI-Werkstatt, Wilhelminenhofstr. 75A,
12459 Berlin, Germany, erik.rodner@htw-berlin.de

https://doi.org/10.30844/AKWI_2022_19

288

In summary our main contributions are as follows:

•	 Repository containing all the databases and code: https://gitlab.com/nexxtnit/
predictive_testing

•	 Ready-to-use database of test results and metadata on a commit basis for four
open-source projects (Chap. 2).

•	 A new baseline method for predictive testing based on simple statistics (Chap.
3).

•	 Evaluation of a baseline approach (statistical feature extraction) for predictive
testing to set the bar for future work (Chap. 5.2)

•	 In-depth analysis of feature relevance on the new dataset to provide insights
concerning major relevant statistics (Chap. 5.3).

Figure 1 Illustration of predictive testing using supervised machine learning: past code changes and
corresponding test results are used for training a machine learning model able to predict test failure

probabilities for future code changes.

Brodmann, Rodner

289

OpenPredict - An Open Research Dataset and Evaluation Protocol for Fine-grained Predictive Testing

2	 OpenPredict - A New Dataset for Predictive Testing

The problem of current papers and implementations of predictive testing is that the data is
often very project specific and not granular enough to make general assumptions. Because
predictive testing is often tuned to specific projects, publishing only the machine learning
model has no benefit for further research. Furthermore, releasing predictive testing training
data of closed-source implementations could reveal insights about the software product.
The data used from continuous integration pipelines is often taken as is, there is no possi-
bility in tuning the scope of tests or choose the granularity of test execution.

In contrast, the goal of this work is to create an open research dataset for experiments in
the field of predictive testing that can be systematically compared also in future work. Our
dataset tries to illustrate the minimal requirements of data that needs to be available to
implement predictive testing for your own project. The dataset itself was generated from
open-source projects and could be theoretically extended further with the data extraction
pipeline we build.

Our data is comprised of four curated open-source repositories of different nature. To ease
evaluation and allow stable statistical evaluation, we used the following criteria to select
repositories:

•	 Written in Python to allow for applying language-specific features in the future

•	 Minimum of 400 commits to get enough data points over time

•	 Minimum of 10 tests to allow for multi-task prediction

•	 Testing happens with pytest or tox to ease the automatic data extraction

These requirements, yielded in four repositories outlined in Table 1. In the following, we
explain the process of data extraction and dataset curation in detail.

290

Project Description Commits Testing Link
Flit ” Simplified packaging of Py-

thon modules” [Pypa21]
1017 Tox with Py-

test
Github

Mock ” The Python mock library”
[Test21]

1277 Pytest Github

Flake8 ”flake8 is a python tool that
glues together pycodestyle,
pyflakes, mccabe, and thirdparty
plugins to check the style and
quality of some python code.”
[Pycq21]

2074 Tox with Py-
test

Github

Nox ” Flexible test automation for
Python” [Thea22]

439 Pytest Github

Table 1 Repositories used in our dataset for predictive testing.

Data Extraction for Test Change Representation: Our method for data extraction is
illustrated in Figure 2. The approach is identical for all four projects being tested in this
work. All information is gained from the project repository in an automatic fashion. The
test suite is extracted from the existing tests and test variations of the repository. We do
not generate synthetic code defects as in [Lund19], to obtain more test results. The com-
mit hash provides us with a unique identifier for the test result as well as the related code
changes.

In contrast to [PaPr21],our predictive testing paradigm is to forecast the test result of every
commit. Every commit in the repository gets tested by every test in the test suite. As a result
of that approach, we gain precise data on code changes and test results.

Figure 2 Data extraction method, every commit is tested with all test variations. The data gathered

from the test run and the repository is saved in an SQL database keeping the correspondence
between them.

Brodmann, Rodner

291

Database: All meta information and main statistical features are stored in an SQL
database, which is outlined in Figure 3 and identical for all projects. The scripts used for
automatically transforming a git repository to the database are available in our associated

code repository.

Figure 3 Database architecture, the commit-id, based on the commit hash, is used for synchroniza-
tion throughout the database

Test Suite: The goal of our predictive testing approach is to predict the test result of all
tests in the test suite. However, tests can change over time. and these variations require
special care. We need to add each test variation of a test as an additional target to prevent
the model from learning wrong statistical dependencies of older code changes and test re-
sults not related to the modified tests. We therefore include all changes of a test and create
a separate test target for each change (see Table 2). All tasks for a fixed will be not statis-
tically independent, since test changes will consist of tiny changes over time. This fact can
be exploited by a multi-task approach for learning.

With including every change in a test case as an own test variation, we increased the
amount of test cases from 12 tests to 329 - phrasing each of these variations as indepen-
dent prediction tasks.

OpenPredict - An Open Research Dataset and Evaluation Protocol for Fine-grained Predictive Testing

292

Tests Newest Commit Test Variations in Test Suite
test_parametrize.py test_parametrize_354.py

test_parametrize_359.py
test_parametrize_367.py

test_version.py test_version_348.py
test_version_367.py

test_command.py test_command_4.py
test_command_4.py
test_command_9.py
test_command_24.py

... …

Table 2 Left: tests from the newest commit of Flit; Right: test variations

For the flit project the dataset statistics can be checked in Table 3.

Version
(Commits)

All
(Passed/Failed)

Training Set
(P/F)

Testing Set
(P/F)

Flit.V0.0 (634) 208’586
(33’391/175’195)

183’253
(28’472/154’781)

25’333 (4919/20’414)

Flit.V1.0.WV (538) 177’002
(28’764/148’238)

157’920
(28’764/143’611)

19’082 (3812/15’270)

Flit.V1.0 (538) 10’760
(7591/3169)

9600
(6830/2770)

1160
(761/399)

Table 3 Dataset statistics of the Flit dataset variations. The newest 10% of the commits are for the

testing set, the other 90% go in the training set, see Chapter 5.1 for details.

3	 Predictive Testing with Statistical Features

In the following, we outline our baseline machine learning approach for predictive testing,
which will be evaluated in Sect. 5.

A dataset consists of three parts, the one-hot encoded test results, the one-hot encoded file
changes, and metadata per commit. As label data the pass/fail column is used. A snippet of
the complete dataset can be examined in Table 4.

Brodmann, Rodner

293

CommitID test_build_422.py test_build_465.py … pyproject.toml
1028 1 0 ... 1
1028 0 1 … 1
... …

FileComplexity AddedLines DeletedLines PassFail
27 5 5 0
27 5 5 0
… … … ...

Table 4 Complete dataset from the Flit database for machine learning. All file changes and tests

are one-hot encoded. The PassFail column is the label we try to predict, and the CommitID will be
removed for training and testing.

As a classification model we use a random forest classifier to predict the outcome of a test-
case as pass or fail. The random forest classifier consists of several decision trees trained
with a random fraction of the training data. A decision tree is made up of inner nodes (split
nodes) and leaves. At each split node a single feature is evaluated since we make use of
simple decision stumps. After traversing a tree, the final estimate is given by an empirical
probability stored at each leaf during learning. A random forest decision is determined by
the average of all trees estimates and a majority vote is used for the final classification
decision.

Due to the simple decision stumps used, a random forest classifier can easily cope with fea-
tures of different magnitudes. Furthermore, we also exploit multi-task learning of all dif-
ferent target tasks (every test variation is a single target) since the tasks are highly related.
This is done in our case by a one-hot-encoding of the task itself and a single binary variable
as a target. Some branches in a single decision tree can therefore focus on an arbitrary set
of tasks by using their one-hot encodings as features in early split nodes. This is beneficial
compared to learning each predictive testing task independently from each other with only
a few training examples available (each test variation might only relate to a few commits).

For our experiments, we use a random forest with 1000 decision trees and a Gini split cri-
terion without a restriction of a maximum number of examples in a leaf.

OpenPredict - An Open Research Dataset and Evaluation Protocol for Fine-grained Predictive Testing

294

4	 Related Work

Reducing the number of executed tests in regression test suites is an established method for
reducing costs and time [YoHa12]. Test selection is a very efficient method for reducing the
executed tests [LHSL16]. Combining test selection with machine learning is the usually
referred to as predictive Testing. Despite its potential, relevance for sustainable develop-
ment, and partial adoption at large tech companies [RiMS21], predictive testing is a rather
unexplored area of research. In [MSPC19], Machalica et al. also used historical data to
implement a data-driven test selection strategy. This allowed the authors to reduce the total
number of test executions by 2/3 while still finding 95% of all failed tests. Unfortunately,
no open dataset was provided, rendering reproduction of the results impossible. [Lund19]
implemented a predictive test selection tool by creating synthetic test results. They altered
the code with small synthetic modifications to obtain labeled data with a decent number
of test failures. Classifying tests results was done using a random forest classifier, which
allows for reducing test executions by 50% at again 95% true positive detection rate for all
failures. A severe disadvantage of this approach is that its performance highly depends on
the realistic nature of the synthetic code modifications. In complex software systems, these
are difficult to design and might be in addition subject to change over time. In contrast, the
approach of [SKPS20] uses simple text similarity metrics to rank tests related to a code
change. In comparison to the impressive dataset gathered in [YBKB22]such as Test Case
Prioritization (TCP from 25 open-source projects, we concentrate on the basic needs to
implement predictive testing. In their work, Java projects are exclusively used along with
their continuous integration history. As a result, many additional data features like code
coverage are available. Furthermore, using only continuous integration data has the disad-
vantage that the granularity of code changes cannot be chosen by oneself. The code chang-
es do differ from build to build and can range from one to several commits. In our work, we
concentrated on changes and test results per single commit - providing predictive testing
at a fine-grained level. However, the three “high level features” having the most impact on
prediction in [YBKB22]such as Test Case Prioritization (TCPare like the ones used in our
work. The work of Sharif et al. [ShML21] focuses on deep learning techniques for regres-
sion test prediction. They show the benefits of their approach especially for large datasets.

A related problem to ours is test suite failure prediction [PaPr21],which tries to predict the
failure of the whole test suite rather than for each test case individually. A further overview
of predictive methods for software engineering is given in [YXLB22].

Brodmann, Rodner

295

5	 Experiments

In the following, we evaluate our baseline approach on OpenPredict showing the power of
simple statistical features for predictive testing.

5.1	 Experimental Setup

For experimenting with machine learning methods for test case prediction, the dataset
needs to be separated first in training and testing data. Instead of selecting random cases
from the dataset, we decided to split the data by its commit-id, i.e., trying to predict the
behaviour of newer commit from the history of older ones. This reflects the use case for
predictive testing, where the model is trained continuously and applied to the most recent
commit. While analyzing the databases, it became obvious that some commits, did not
have any test results. This is because early commits in the repository have often not been
able to execute tests at all, therefore they contain no test results.

The dataset is split into testing and training data by the CommitID. From the sum of com-
mits containing test data, the newest 10% are used for testing, the other 90% for training.
Please note that the commit-id is of course not used as a feature.

Since our prediction tasks are binary, we used an ROC analysis as the main performance
metric for our experiments. Instead of calculating ROC results for each task, we evaluated
the performance of the random forest classifier, which provides us with an aggregated per-
formance metric over all test cases.

OpenPredict - An Open Research Dataset and Evaluation Protocol for Fine-grained Predictive Testing

296

Dataset Specifications Features
Flit.V0.0 no metadata

all commits, starting at init
all test cases, no filtering of variations

test
changed files in commit
test result

Flit.V1.0.WV metadata FileComplexity and AddedLines
starting at commit tag V1.0
all test cases, no filtering of variations

test
changed files in commit
test result
FileComplexity
AddedLines

Flit.V1.0 Metadata FileComplexity and AddedLines added
Starting at commit tag V1.0
Combining all test variations to one test case

test
changed files in commit
test result
FileComplexity
AddedLines

Table 5 Dataset variations of the Flit database: Flit.V0.0 has all raw data and no metadata, Flit.

V1.0.WV has metadata added, Flit.V1.0 contains structured test results and metadata.

5.2	 Analysis on the flit dataset

First, we evaluate some dataset aspect on the Flit dataset with our baseline approach. In
particular, we want to evaluate the impact of skipping the very first commits and dealing
with test case variations as individual tasks (see Figure 5 for an illustration). Our experi-
ments are performed with three different versions of the Flit dataset in Table 5. The results
are given in Figure 4.

The AUC improves about 6% when adding more relevant data to the dataset and about 8%
when structuring the test results of the testcases according to their commit-id.

Brodmann, Rodner

297

Figure 4 Different classification for the three dataset variations of Flit from Tab. 5

For improving classification an attempt is made to restructure the data of all test case vari-
ations. Because all test case variations test the same code functionality, logically it makes
sense to only use the result of one test variation at a time. At every commit the result of the
matching test variation must be used.

As a result of the previous observations, a test variation is used as long as the commit-id of
the current commit to test, is one greater than the commit-id of the test variation (Figure 5).

OpenPredict - An Open Research Dataset and Evaluation Protocol for Fine-grained Predictive Testing

298

Figure 5 Test variations being restructured for a dataset. The Results of every test variation is used
if the commit currently testing is greater than the commit the test variation is created.

5.3	 In-depth analysis of feature relevance

The metadata features we identified in Sect. 3 are contributing strongly to the classification.
The importance is visible in Table 6. The feature importance is measured as the impurity
decrease within each tree. The absolute value of the accumulated impurity decrease is the
importance of each feature. Besides the obvious test cases as features, the metadata fea-
tures are the ones with the biggest impact.

Nr. Importance Feature
1 0.137 test_importable_.py
2 0.119 test_metadata_.py
3 0.098 FileComplexity
4 0.055 test_config_.py
5 0.052 AddedLines
6 0.049 DeletedLines

Table 6 Feature importance of Flit.V1.0 dataset. The Metadata features FileComplexity, Added-

Lines and DeletedLines are within the 6 most important features.

When analyzing the classification results, the question emerged what probably would hap-
pen, if the commit-id is kept as a feature in the dataset. The results can be seen in Figure 6.

Brodmann, Rodner

299

Figure 6 Importance of commits included in dataset

Flit.V1.0: The blue line in the roc-analysis (Figure 6) and the classification matrix on the
left border, is the best performing dataset from Chap. 5.1 (Flit.V1.0).

Flit.V1.0.WCID: The orange line and second classification matrix from the left (Figure 6),
is the same dataset as Flit.V1.0 but with the feature commit-id added.

The AUC of the random forest classifier is improving by around 5% by adding the commit-
id as a feature to the dataset.

The reason for the performance improvement can be found in a deeper analysis of the
nodes of the feature commit-id in the balanced random forest classifier, visible in Figure 7.

Figure 7 Node for feature commit-id in tree of balanced random forest classifier

OpenPredict - An Open Research Dataset and Evaluation Protocol for Fine-grained Predictive Testing

300

The whole dataset contains around 1000 commits. Starting with commit-id 1 for the oldest
commit, the newest commit has the id 1000. The node in Figure 7 is separating the commits
for the commit-id value <= 635, 5. Because our test set contains only the newest 10% of the
commits, the commit-id in the test set will always be greater than 635,5. This observation
leads to the idea that fewer commits in the dataset could actually benefit the classifier.

Flit.V2.0: The purple line in the ROC analysis and the classification matrix second from
the right border, is the same dataset as the first one. The commit-id is not included as a
feature, but commits were only used starting with commit-tag V2.0.

Flit.V3.0: The cyan line in the ROC analysis and the classification matrix first from the

right, is the same dataset as the first one. The commit-id is not included as a feature, but

commits were only used starting with commit-tag V3.0.

In conclusion, it becomes clear that a logical connection of the code, represented with
version tags, is important to train a machine learning model for predictive testing. This
leads to the theory that not the whole history of a repository is necessary for predictive
testing, but rather the last one or two versions of the project code.

Version
(Commits)

All
(Passed/Failed)

Training Set
(P/F)

Testing Set
(P/F)

Flit.V1.0 (538) 10’760 (7591/3169) 9600
(6830/2770)

1160
(761/399)

Flit.V1.0.WCID
(538)

10’760 (7591/3169) 9600
(6830/2770)

1160
(761/399)

Flit.V2.0 (347) 6940
(4948/1992)

6240
(4444/1796)

700
(504/196)

Flit.V3.0 (193) 3860
(2678/1182)

3460
(2382/1078)

400
(296/104)

Table 7 Statistical features of the datasets used to analyze the commit-id feature

5.4	 Full evaluation on OpenPredict

In Table 8 and Figure 8 the size of all datasets and the performance of the classifiers for
the different projects can be examined. All four projects we tested in our work provided an
acceptable classification. The visible differences in Figure 8 are explainable because of the
code complexity, size, and test amount of the different projects. The worst classification
project, Flake8, also offers space to further improve classification performance by increas-
ing the commit tag.

Brodmann, Rodner

301

Training a predictive testing model for different repositories shows that our approach is
not project specific and offers the possibility to implement predictive testing in a general
manner, as long as the correct data is provided.

Version
(Commits)

All
(Passed/Failed)

Training Set
(P/F)

Testing Set
(P/F)

Flit.V2.0 (347) 6940
(4948/1992)

6240
(4444/1796)

700
(504/196)

Mock.V0.8 (464) 4640
(2636/2004)

4170
(2254/1916)

470
(382/88)

Nox.V0.0 (436) 6976
(2964/4012)

6272
(2486/3786)

704
(478/226)

Flake8.V3.7 (613) 27’585
(10’178/17’407)

24’795
(8564/16’231)

2790
(1614/1176)

Table 8 Statistical features of the datasets of all different projects

Figure 8 Overview of the best possible classification with optimizations discovered in this paper.

OpenPredict - An Open Research Dataset and Evaluation Protocol for Fine-grained Predictive Testing

302

Conclusions and Future Work

We presented the first open research dataset for predictive testing on a fine-granular basis.
With this minimalistic approach we identified the core features necessary to predict test
results. With a detailed analysis of feature importance, it was even possible to conclude
that not the whole code history is necessary for gathering training data. Furthermore, we
developed a baseline approach based on statistical features from the repository and a multi-
task random forest as predictor. Applied to the dataset, the approach showed surprisingly
high prediction performance, even though no detailed code analysis was used to enrich the
feature representation of the related code changes.

There is a multitude of research ideas to boost the performance of predictive testing, in-
cluding using recent language models trained on source code [CTJY21] or even directly on
code changes. Although we use a simple multi-task technique (using one-hot-encoded task
descriptions) for prediction, this representation lacks the information that variations of the
same underlying unit test are related differently based on their commit history. In addition,
the baseline approach and related ones should be further evaluated in a continuous learning
setting, where the model is learned from last K commits and applied to the most recent one.

Brodmann, Rodner

303

Bibliography

[CTJY21] 	 Chen, Mark ; Tworek, Jerry ; Jun, Heewoo ; Yuan, Qiming ; Pinto, Henrique Ponde de
Oliveira ; Kaplan, Jared ; Edwards, Harri ; Burda, Yuri ; u. a.: Evaluating large language
models trained on code. In: arXiv preprint arXiv:2107.03374 (2021)

[LHSL16] 	Legunsen, Owolabi ; Hariri, Farah ; Shi, August ; Lu, Yafeng ; Zhang, Lingming ; Ma-
rinov, Darko: An extensive study of static regression test selection in modern software
evolution: 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016. In: Su, Z. ; Zimmermann, T. ; Cleland-Huang, J. (Hrsg.) FSE
2016 - Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, Proceedings of the ACM SIGSOFT Symposium on the
Foundations of Software Engineering., Association for Computing Machinery (2016),
S. 583–594

[Lund19] 	 Lundsten, Erik: EALRTS : A predictive regression test selection tool, KTH, School of
Electrical Engineering and Computer Science (EECS), Master’s Thesis, 2019. — Back-
up Publisher: KTH, School of Electrical Engineering and Computer Science (EECS)

[MSPC19] 	Machalica, Mateusz ; Samylkin, Alex ; Porth, Meredith ; Chandra, Satish: Predictive Test
Selection. In: Proceedings of the 41st International Conference on Software Engineer-
ing: Software Engineering in Practice, ICSE-SEIP ’19 : IEEE Press, 2019, S. 91–100

[PaPr21] 	 Pan, Cong ; Pradel, Michael: Continuous test suite failure prediction. In: Proceedings
of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis,
2021, S. 553–565

[Pycq21] 	 Pycqa: flake8. GitHub.

[Pypa21] 	 pypa: flit. GitHub.

[RiMS21] 	 Ricca, Filippo ; Marchetto, Alessandro ; Stocco, Andrea: AI-based Test Automation: A
Grey Literature Analysis. In: 2021 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW) : IEEE, 2021, S. 263–270

[ShML21] 	Sharif, Aizaz ; Marijan, Dusica ; Liaaen, Marius: DeepOrder: Deep Learning for Test
Case Prioritization in Continuous Integration Testing. In: 2021 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME) : IEEE, 2021, S. 525–534

[SKPS20] 	 Sutar, Shantanu ; Kumar, Rajesh ; Pai, Sriram ; Shwetha, BR: Regression test cases selec-
tion using natural language processing. In: 2020 International Conference on Intelligent
Engineering and Management (ICIEM) : IEEE, 2020, S. 301–305

[Test21] 	 testing-cabal: mock. GitHub.

[Thea22] 	 theacodes: nox. GitHub.

[YBKB22] 	Yaraghi, Ahmadreza Saboor ; Bagherzadeh, Mojtaba ; Kahani, Nafiseh ; Briand, Lionel:
Scalable and Accurate Test Case Prioritization in Continuous Integration Contexts. In:
IEEE Transactions on Software Engineering (2022), S. 1–24

[YoHa12] 	 Yoo, S. ; Harman, M.: Regression testing minimization, selection and prioritization: a
survey. In: Software Testing, Verification and Reliability Bd. 22 (2012), Nr. 2, S. 67–120

[YXLB22] 	Yang, Yanming ; Xia, Xin ; Lo, David ; Bi, Tingting ; Grundy, John ; Yang, Xiaohu: Pre-
dictive Models in Software Engineering: Challenges and Opportunities. In: ACM Trans-
actions on Software Engineering and Methodology Bd. 31 (2022), Nr. 3, S. 56:1-56:72

OpenPredict - An Open Research Dataset and Evaluation Protocol for Fine-grained Predictive Testing

