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OpenPredict - An Open Research Dataset and Evaluation 
Protocol for Fine-grained Predictive Testing

David Brodmann1, Erik Rodner2

Abstract: Systematic testing of every single component and interface is undoubtedly an important 
measure to handle the complex nature of current software systems. However, this comes with often 
neglected computational costs. The aim of this paper is therefore to cut time and resource needs by 
predictive testing, i.e., predicting test failures with machine learning using a surprisingly simple 
statistical feature representation. Furthermore, we present the first open research benchmark for pre-
dictive testing to enable and foster future research in this area.
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1	 Introduction

Software testing is crucial for the success of a professional software project. However, with 
a growing code complexity, regression testing for changes gets more time and resource 
consuming resulting in hours of software tests for evaluating code changes for every new 
commit. A time delay, which is simply impractical to handle during development and a 
waste of expensive resources. A classical solution to the problem is to track test depen-
dencies and code coverage of each test over time. However, this is time-consuming and 
sometimes impossible to achieve especially within heterogeneous repositories with several 
language barriers [MSPC19].

Because predictive testing is heavily project dependent, our contribution to the field of 
predictive testing is not a new machine learning approach, but rather a curated and open 
dataset to allow future comparison and evaluation of predictive testing methods.
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In summary our main contributions are as follows:

•	 Repository containing all the databases and code: https://gitlab.com/nexxtnit/
predictive_testing 

•	 Ready-to-use database of test results and metadata on a commit basis for four 
open-source projects (Chap. 2).

•	 A new baseline method for predictive testing based on simple statistics (Chap. 
3).

•	 Evaluation of a baseline approach (statistical feature extraction) for predictive 
testing to set the bar for future work (Chap. 5.2)

•	 In-depth analysis of feature relevance on the new dataset to provide insights 
concerning major relevant statistics (Chap. 5.3).

 
Figure 1 Illustration of predictive testing using supervised machine learning: past code changes and 
corresponding test results are used for training a machine learning model able to predict test failure 

probabilities for future code changes.
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2	 OpenPredict - A New Dataset for Predictive Testing

The problem of current papers and implementations of predictive testing is that the data is 
often very project specific and not granular enough to make general assumptions. Because 
predictive testing is often tuned to specific projects, publishing only the machine learning 
model has no benefit for further research. Furthermore, releasing predictive testing training 
data of closed-source implementations could reveal insights about the software product. 
The data used from continuous integration pipelines is often taken as is, there is no possi-
bility in tuning the scope of tests or choose the granularity of test execution.

In contrast, the goal of this work is to create an open research dataset for experiments in 
the field of predictive testing that can be systematically compared also in future work. Our 
dataset tries to illustrate the minimal requirements of data that needs to be available to 
implement predictive testing for your own project. The dataset itself was generated from 
open-source projects and could be theoretically extended further with the data extraction 
pipeline we build.

Our data is comprised of four curated open-source repositories of different nature. To ease 
evaluation and allow stable statistical evaluation, we used the following criteria to select 
repositories:

•	 Written in Python to allow for applying language-specific features in the future

•	 Minimum of 400 commits to get enough data points over time

•	 Minimum of 10 tests to allow for multi-task prediction

•	 Testing happens with pytest or tox to ease the automatic data extraction

These requirements, yielded in four repositories outlined in Table 1. In the following, we 
explain the process of data extraction and dataset curation in detail.
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Project Description Commits Testing Link
Flit ” Simplified packaging of Py-

thon modules” [Pypa21]
1017 Tox with Py-

test
Github

Mock ” The Python mock library” 
[Test21]

1277 Pytest Github

Flake8 ”flake8 is a python tool that 
glues together pycodestyle,
pyflakes, mccabe, and thirdparty 
plugins to check the style and 
quality of some python code.” 
[Pycq21]

2074 Tox with Py-
test

Github

Nox ” Flexible test automation for 
Python” [Thea22]

439 Pytest Github

 
Table 1 Repositories used in our dataset for predictive testing. 

Data Extraction for Test Change Representation: Our method for data extraction is 
illustrated in Figure 2. The approach is identical for all four projects being tested in this 
work. All information is gained from the project repository in an automatic fashion. The 
test suite is extracted from the existing tests and test variations of the repository. We do 
not generate synthetic code defects as in [Lund19], to obtain more test results. The com-
mit hash provides us with a unique identifier for the test result as well as the related code 
changes.

In contrast to [PaPr21],our predictive testing paradigm is to forecast the test result of every 
commit. Every commit in the repository gets tested by every test in the test suite. As a result 
of that approach, we gain precise data on code changes and test results.  

 
Figure 2 Data extraction method, every commit is tested with all test variations. The data gathered 

from the test run and the repository is saved in an SQL database keeping the correspondence 
between them. 
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Database: All meta information and main statistical features are stored in an SQL 
database, which is outlined in Figure 3 and identical for all projects. The scripts used for 
automatically transforming a git repository to the database are available in our associated 

code repository.

 
 
Figure 3 Database architecture, the commit-id, based on the commit hash, is used for synchroniza-
tion throughout the database

Test Suite: The goal of our predictive testing approach is to predict the test result  of all 
tests  in the test suite. However, tests can change over time. and these variations require 
special care. We need to add each test variation of a test  as an additional target  to prevent 
the model from learning wrong statistical dependencies of older code changes and test re-
sults not related to the modified tests. We therefore include all changes of a test and create 
a separate test target for each change (see Table 2). All tasks  for a fixed  will be not statis-
tically independent, since test changes will consist of tiny changes over time. This fact can 
be exploited by a multi-task approach for learning.

With including every change in a test case as an own test variation, we increased the 
amount of test cases from 12 tests to 329 - phrasing each of these variations as indepen-
dent prediction tasks. 

OpenPredict - An Open Research Dataset and Evaluation Protocol for Fine-grained Predictive Testing
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Tests Newest Commit Test Variations in Test Suite
test_parametrize.py test_parametrize_354.py

test_parametrize_359.py
test_parametrize_367.py

test_version.py test_version_348.py
test_version_367.py

test_command.py test_command_4.py
test_command_4.py
test_command_9.py
test_command_24.py

... …

 
Table 2 Left: tests from the newest commit of Flit; Right: test variations

 
For the flit project the dataset statistics can be checked in Table 3.

Version 
(Commits)

All  
(Passed/Failed)

Training Set  
(P/F)

Testing Set 
(P/F)

Flit.V0.0 (634) 208’586 
(33’391/175’195)

183’253 
(28’472/154’781)

25’333 (4919/20’414)

Flit.V1.0.WV (538) 177’002 
(28’764/148’238)

157’920 
(28’764/143’611)

19’082 (3812/15’270)

Flit.V1.0 (538) 10’760 
(7591/3169)

9600 
(6830/2770)

1160
(761/399)

 
Table 3 Dataset statistics of the Flit dataset variations. The newest 10% of the commits are for the 

testing set, the other 90% go in the training set, see Chapter 5.1 for details.

3	 Predictive Testing with Statistical Features

In the following, we outline our baseline machine learning approach for predictive testing, 
which will be evaluated in Sect. 5.

A dataset consists of three parts, the one-hot encoded test results, the one-hot encoded file 
changes, and metadata per commit. As label data the pass/fail column is used. A snippet of 
the complete dataset can be examined in Table 4.
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CommitID test_build_422.py test_build_465.py … pyproject.toml
1028 1 0 ... 1 
1028 0 1 … 1
... ... ... ... …

FileComplexity AddedLines DeletedLines PassFail
27 5 5 0
27 5 5 0
… … … ...

 
Table 4 Complete dataset from the Flit database for machine learning. All file changes and tests 

are one-hot encoded. The PassFail column is the label we try to predict, and the CommitID will be 
removed for training and testing. 

As a classification model we use a random forest classifier to predict the outcome of a test-
case as pass or fail. The random forest classifier consists of several decision trees trained 
with a random fraction of the training data. A decision tree is made up of inner nodes (split 
nodes) and leaves. At each split node a single feature is evaluated since we make use of 
simple decision stumps. After traversing a tree, the final estimate is given by an empirical 
probability stored at each leaf during learning. A random forest decision is determined by 
the average of all trees estimates and a majority vote is used for the final classification 
decision. 

Due to the simple decision stumps used, a random forest classifier can easily cope with fea-
tures of different magnitudes. Furthermore, we also exploit multi-task learning of all dif-
ferent target tasks (every test variation is a single target) since the tasks are highly related. 
This is done in our case by a one-hot-encoding of the task itself and a single binary variable 
as a target. Some branches in a single decision tree can therefore focus on an arbitrary set 
of tasks by using their one-hot encodings as features in early split nodes. This is beneficial 
compared to learning each predictive testing task independently from each other with only 
a few training examples available (each test variation might only relate to a few commits). 

For our experiments, we use a random forest with 1000 decision trees and a Gini split cri-
terion without a restriction of a maximum number of examples in a leaf.

OpenPredict - An Open Research Dataset and Evaluation Protocol for Fine-grained Predictive Testing
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4	 Related Work

Reducing the number of executed tests in regression test suites is an established method for 
reducing costs and time [YoHa12]. Test selection is a very efficient method for reducing the 
executed tests [LHSL16]. Combining test selection with machine learning is the usually 
referred to as predictive Testing. Despite its potential, relevance for sustainable develop-
ment, and partial adoption at large tech companies [RiMS21], predictive testing is a rather 
unexplored area of research. In [MSPC19], Machalica et al. also used historical data to 
implement a data-driven test selection strategy. This allowed the authors to reduce the total 
number of test executions by 2/3 while still finding 95% of all failed tests. Unfortunately, 
no open dataset was provided, rendering reproduction of the results impossible. [Lund19] 
implemented a predictive test selection tool by creating synthetic test results. They altered 
the code with small synthetic modifications to obtain labeled data with a decent number 
of test failures. Classifying tests results was done using a random forest classifier, which 
allows for reducing test executions by 50% at again 95% true positive detection rate for all 
failures. A severe disadvantage of this approach is that its performance highly depends on 
the realistic nature of the synthetic code modifications. In complex software systems, these 
are difficult to design and might be in addition subject to change over time. In contrast, the 
approach of [SKPS20] uses simple text similarity metrics to rank tests related to a code 
change. In comparison to the impressive dataset gathered in [YBKB22]such as Test Case 
Prioritization (TCP from 25 open-source projects, we concentrate on the basic needs to 
implement predictive testing. In their work, Java projects are exclusively used along with 
their continuous integration history. As a result, many additional data features like code 
coverage are available. Furthermore, using only continuous integration data has the disad-
vantage that the granularity of code changes cannot be chosen by oneself. The code chang-
es do differ from build to build and can range from one to several commits. In our work, we 
concentrated on changes and test results per single commit - providing predictive testing 
at a fine-grained level. However, the three “high level features” having the most impact on 
prediction in [YBKB22]such as Test Case Prioritization (TCPare like the ones used in our 
work. The work of Sharif et al. [ShML21] focuses on deep learning techniques for regres-
sion test prediction. They show the benefits of their approach especially for large datasets.

A related problem to ours is test suite failure prediction [PaPr21],which tries to predict the 
failure of the whole test suite rather than for each test case individually. A further overview 
of predictive methods for software engineering is given in [YXLB22].
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5	 Experiments

In the following, we evaluate our baseline approach on OpenPredict showing the power of 
simple statistical features for predictive testing.

5.1	 Experimental Setup

For experimenting with machine learning methods for test case prediction, the dataset 
needs to be separated first in training and testing data. Instead of selecting random cases 
from the dataset, we decided to split the data by its commit-id, i.e., trying to predict the 
behaviour of newer commit from the history of older ones. This reflects the use case for 
predictive testing, where the model is trained continuously and applied to the most recent 
commit. While analyzing the databases, it became obvious that some commits, did not 
have any test results. This is because early commits in the repository have often not been 
able to execute tests at all, therefore they contain no test results.

The dataset is split into testing and training data by the CommitID. From the sum of com-
mits containing test data, the newest 10% are used for testing, the other 90% for training. 
Please note that the commit-id is of course not used as a feature.

Since our prediction tasks are binary, we used an ROC analysis as the main performance 
metric for our experiments. Instead of calculating ROC results for each task, we evaluated 
the performance of the random forest classifier, which provides us with an aggregated per-
formance metric over all test cases.

OpenPredict - An Open Research Dataset and Evaluation Protocol for Fine-grained Predictive Testing
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Dataset Specifications Features
Flit.V0.0 no metadata

all commits, starting at init
all test cases, no filtering of variations

test 
changed files in commit
test result

Flit.V1.0.WV metadata FileComplexity and AddedLines
starting at commit tag V1.0
all test cases, no filtering of variations

test
changed files in commit
test result
FileComplexity
AddedLines

Flit.V1.0 Metadata FileComplexity and AddedLines added
Starting at commit tag V1.0
Combining all test variations to one test case

test
changed files in commit
test result
FileComplexity
AddedLines

 
Table 5 Dataset variations of the Flit database: Flit.V0.0 has all raw data and no metadata, Flit.

V1.0.WV has metadata added, Flit.V1.0 contains structured test results and metadata.

5.2	 Analysis on the flit dataset

First, we evaluate some dataset aspect on the Flit dataset with our baseline approach. In 
particular, we want to evaluate the impact of skipping the very first commits and dealing 
with test case variations as individual tasks (see Figure 5 for an illustration). Our experi-
ments are performed with three different versions of the Flit dataset in Table 5. The results 
are given in Figure 4.

 
The AUC improves about 6% when adding more relevant data to the dataset and about 8% 
when structuring the test results of the testcases according to their commit-id.
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Figure 4 Different classification for the three dataset variations of Flit from Tab. 5 

For improving classification an attempt is made to restructure the data of all test case vari-
ations. Because all test case variations test the same code functionality, logically it makes 
sense to only use the result of one test variation at a time. At every commit the result of the 
matching test variation must be used.

As a result of the previous observations, a test variation is used as long as the commit-id of 
the current commit to test, is one greater than the commit-id of the test variation (Figure 5).

OpenPredict - An Open Research Dataset and Evaluation Protocol for Fine-grained Predictive Testing
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Figure 5 Test variations being restructured for a dataset. The Results of every test variation is used 
if the commit currently testing is greater than the commit the test variation is created.

5.3	 In-depth analysis of feature relevance

The metadata features we identified in Sect. 3 are contributing strongly to the classification. 
The importance is visible in Table 6. The feature importance is measured as the impurity 
decrease within each tree. The absolute value of the accumulated impurity decrease is the 
importance of each feature.  Besides the obvious test cases as features, the metadata fea-
tures are the ones with the biggest impact.

Nr. Importance Feature
1 0.137 test_importable_.py
2 0.119 test_metadata_.py
3 0.098 FileComplexity
4 0.055 test_config_.py
5 0.052 AddedLines
6 0.049 DeletedLines

 
Table 6 Feature importance of Flit.V1.0 dataset. The Metadata features FileComplexity, Added-

Lines and DeletedLines are within the 6 most important features.

When analyzing the classification results, the question emerged what probably would hap-
pen, if the commit-id is kept as a feature in the dataset. The results can be seen in Figure 6.
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Figure 6 Importance of commits included in dataset 

Flit.V1.0: The blue line in the roc-analysis (Figure 6) and the classification matrix on the 
left border, is the best performing dataset from Chap. 5.1 (Flit.V1.0).

Flit.V1.0.WCID: The orange line and second classification matrix from the left (Figure 6), 
is the same dataset as Flit.V1.0 but with the feature commit-id added.

The AUC of the random forest classifier is improving by around 5% by adding the commit-
id as a feature to the dataset.

The reason for the performance improvement can be found in a deeper analysis of the 
nodes of the feature commit-id in the balanced random forest classifier, visible in Figure 7.

 
Figure 7 Node for feature commit-id in tree of balanced random forest classifier
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The whole dataset contains around 1000 commits. Starting with commit-id 1 for the oldest 
commit, the newest commit has the id 1000. The node in Figure 7 is separating the commits 
for the commit-id value <= 635, 5. Because our test set contains only the newest 10% of the 
commits, the commit-id in the test set will always be greater than 635,5. This observation 
leads to the idea that fewer commits in the dataset could actually benefit the classifier.

Flit.V2.0: The purple line in the ROC analysis and the classification matrix second from 
the right border, is the same dataset as the first one. The commit-id is not included as a 
feature, but commits were only used starting with commit-tag V2.0.

Flit.V3.0: The cyan line in the ROC analysis and the classification matrix first from the

right, is the same dataset as the first one. The commit-id is not included as a feature, but

commits were only used starting with commit-tag V3.0.

In conclusion, it becomes clear that a logical connection of the code, represented with 
version tags, is important to train a machine learning model for predictive testing. This 
leads to the theory that not the whole history of a repository is necessary for predictive 
testing, but rather the last one or two versions of the project code. 

Version 
(Commits)

All  
(Passed/Failed)

Training Set  
(P/F)

Testing Set 
(P/F)

Flit.V1.0 (538) 10’760 (7591/3169) 9600 
(6830/2770)

1160
(761/399)

Flit.V1.0.WCID 
(538)

10’760 (7591/3169) 9600 
(6830/2770)

1160
(761/399)

Flit.V2.0 (347) 6940 
(4948/1992)

6240 
(4444/1796)

700 
(504/196)

Flit.V3.0 (193) 3860 
(2678/1182)

3460 
(2382/1078)

400
(296/104)

 
Table 7 Statistical features of the datasets used to analyze the commit-id feature

5.4	 Full evaluation on OpenPredict

In Table 8 and Figure 8 the size of all datasets and the performance of the classifiers for 
the different projects can be examined. All four projects we tested in our work provided an 
acceptable classification. The visible differences in Figure 8 are explainable because of the 
code complexity, size, and test amount of the different projects. The worst classification 
project, Flake8, also offers space to further improve classification performance by increas-
ing the commit tag.
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Training a predictive testing model for different repositories shows that our approach is 
not project specific and offers the possibility to implement predictive testing in a general 
manner, as long as the correct data is provided.  

 

Version 
(Commits)

All  
(Passed/Failed)

Training Set  
(P/F)

Testing Set 
(P/F)

Flit.V2.0 (347) 6940 
(4948/1992)

6240 
(4444/1796)

700 
(504/196)

Mock.V0.8 (464) 4640
(2636/2004)

4170
(2254/1916)

470
(382/88)

Nox.V0.0 (436) 6976
(2964/4012)

6272
(2486/3786)

704 
(478/226)

Flake8.V3.7 (613) 27’585 
(10’178/17’407)

24’795
(8564/16’231)

2790
(1614/1176)

 
Table 8 Statistical features of the datasets of all different projects 

 
 

Figure 8 Overview of the best possible classification with optimizations discovered in this paper.
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Conclusions and Future Work

We presented the first open research dataset for predictive testing on a fine-granular basis. 
With this minimalistic approach we identified the core features necessary to predict test 
results. With a detailed analysis of feature importance, it was even possible to conclude 
that not the whole code history is necessary for gathering training data.  Furthermore, we 
developed a baseline approach based on statistical features from the repository and a multi-
task random forest as predictor. Applied to the dataset, the approach showed surprisingly 
high prediction performance, even though no detailed code analysis was used to enrich the 
feature representation of the related code changes.

There is a multitude of research ideas to boost the performance of predictive testing, in-
cluding using recent language models trained on source code [CTJY21] or even directly on 
code changes. Although we use a simple multi-task technique (using one-hot-encoded task 
descriptions) for prediction, this representation lacks the information that variations of the 
same underlying unit test are related differently based on their commit history. In addition, 
the baseline approach and related ones should be further evaluated in a continuous learning 
setting, where the model is learned from last K commits and applied to the most recent one.
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