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Abstract. Since 2017 there has been an exponential growth in scientific 

publications regarding the field of 3D object detection (3DOD). On the one 

hand, this growth can be explained by the strong demand for autonomous 

vehicles, and on the other hand, by the wide availability of 3D sensors. Due to 

the strong heterogeneity of developed approaches, this paper aims to identify, 

analyze and systematize publications that propose end-to-end solutions for 

3DOD towards the goal to provide a structured framework which can guide 

future development, evaluation and application activities. To carry out the 

research, a systematic literature review is combined with a taxonomy 

development approach. The resulting framework consists of six dimensions, 

covering the addressed domains, applied datasets, sensor properties, data 

representation formats, modeling techniques, and evaluation criteria. The 

taxonomy can help researchers and practitioners to get a quick overview about 

the field by decomposing 3DOD solutions into more manageable pieces. 
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1 Introduction 

The visual system allows humans to identify objects in an image and determine where 

they are by simply glancing at them [1]. The interdisciplinary research field of 

computer vision seeks to mimic this specific ability and refers to it as object detection 

[2]. Object detection includes the parametrization of a bounding box containing the 

recognized and classified object [3, 4]. Most research in that area has focused on two-

dimensional (2D) object detection based on widely available Red-Green-Blue (RGB) 

or greyscale images. However, this completely leaves out the third dimension and 

only partly imitates the human visual system. In fact, many modern applications like 

robot assistants or autonomous vehicles are highly dependent on depth and surface 

data to securely navigate in three-dimensional (3D) environments [5]. 

With the rising availability of mobile 3D sensors like RGB-Depth (RGB-D) 

cameras and LiDAR (light detection and ranging) sensors, more depth data can be 

captured and processed [5]. This allowed great progress in the field of 3D object 

detection (3DOD) and brought forth a variety of heterogeneous methods and solutions 

used for this task [6]. Simultaneously, this heterogeneity results in an increasing 

difficulty to compare the multifaceted approaches with each other and derive findings 
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for archetypal application scenarios. Consequently, it requires a systematization that 

structures the field and provides an orientation for researchers and practitioners. As of 

today, there is only one publication so far aiming to arrange and classify a 

representative set of approaches for 3DOD with a particular focus on the domain of 

autonomous driving [6]. 

Therefore, we aim to complement and extend this work by conducting an 

exhaustive domain-independent review, as it can help developers and operators in 

information systems (IS), data science and other related fields to gain a quick 

overview about different design options within the area of 3DOD. More specifically, 

we pursue the goal to identify, analyze and systematize characteristic components of 

3DOD end-to-end solutions to increase transparency and guide the selection of 

different components during the development and evaluation of (novel) solutions and 

their embedding into analytical IS. Thus, the following two research questions are 

focused in this paper: 

RQ1: Which publications deal with the development of 3DOD methods/solutions? 

RQ2: How can the identified results be systematized within a structured framework? 

To answer our research questions, we first apply a systematic literature review [7]. 

Subsequently, we use the identified articles to develop a taxonomy according to the 

guidelines of Nickerson et al. [8]. Following this line, our paper is organized as 

follows: In the next section, we briefly describe the background of 3DOD and refer to 

related work. We then describe our research method in detail and subsequently 

present the results of the literature review and the taxonomic framework. Finally, we 

discuss our findings, draw a conclusion and give an outlook for future research. 

2 Conceptual Background and Related Work  

To emulate the human visual system has become a challenging task within the last 

decades. As a result, the scientific community tries to make computers gain the same 

high-level understanding from digital images or videos as humans within the research 

field of computer vision [9]. A core task arising from this trend is object detection, 

which is the fusion of object recognition and localization [2]. For this task, different 

kinds of machine learning (ML) algorithms can be applied, whereas recent efforts are 

increasingly directed towards neural networks with ever deeper network architectures. 

This allows them to be fed with high-dimensional input data and then automatically 

discover internal structures and representations that are needed for detection tasks 

[10]. 

3D vision aims to extend the previously discussed concepts of computer vision by 

adding data of the third dimension. This leads on the one hand to six possible degrees 

of freedom (6DoF) instead of three (i.e., surge, heave, sway, yaw, pitch and roll), and 

on the other, to an accompanying increase in the number of scenery configurations. 

While methods in 2D space are good for simple visual tasks, more sophisticated 

approaches are needed to improve, for instance, autonomous driving applications or 

complex automated productions lines supported by robots [11]. To capture 3D scenes, 

commonly used monocular cameras are no longer sufficient. Therefore, special 
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sensors have been developed to capture depth information. RGB-D cameras like 

Microsoft’s Kinect use stereo vision [12], while LiDAR sensors like Velodyne’s 

HDL-64E use laser beams to infer depth information [13]. The data acquired by these 

3D sensors can be converted to a more generic structure, the point cloud. Formally 

spoken, it is a set of points of a vector space that has an unorganized spatial structure 

[14]. The point cloud is described by the contained points, which are each described 

by their coordinates x, y and z in a 3D coordinate system. Besides these spatial 

coordinates, they can also contain additional parameters like RGB-color intensity or 

distance to ground plane. 

Utilizing the input acquired by sensors, the idea of 3DOD is to output 3D bounding 

boxes and the corresponding class labels for all relevant objects within the sensors 

field of view. 3D bounding boxes are rectangular cuboids in the 3D space. To ensure 

relevancy, their size should be minimal, while still containing all relevant parts of an 

object. A 3D bounding box usually gets parameterized as (x, y, z, h, w, l, c), where (x, 

y, z) represent the 3D coordinates of the bounding box center, (h, w, l) refer to the 

height, width and length of the box and c stands for the class of the box [15]. 

So far, only one article by Arnold et al. [6] has been published dealing with the 

review and systematization of 3DOD solutions. In their survey, the authors examine 

exclusively DL-based methods focused at the domain of autonomous driving 

scenarios. Thus, contributions that cover the relevant domain of indoor applications as 

well as non-DL-based approaches are currently lacking. To fill this gap, we conduct 

the following exhaustive review and develop a taxonomy to systematize the emerging 

field. 

3 Research Method 

3.1 Systematic Literature Review 

To identify relevant studies dealing with 3DOD methods and solutions, we carried out 

a systematic literature review [7]. Specifically, we applied a database search using the 

following common libraries for IS and ML research: IEEE Xplore, ScienceDirect, 

ACM Digital Library, SpringerLink, EBSCOhost and arXiv. As search terms, we 

combined the keywords ‘3D’, ‘object’ and ‘detection’ and applied them with 

alternative spellings (e.g., ‘three dimensional’) and related terms (e.g., ‘recognition’, 
‘localization’, ‘classification’). However, to ensure relevancy, the related terms were 

exclusively applied in combination with the term ‘detection’. This led to a total of 705 

items which had to be further reduced by appropriate filter criteria (day of search: 

2019-07-15). 

In a first stage, inclusion and exclusion criteria were applied after reading the 

titles, summaries and conclusions of each article [16]. The criteria were derived from 

the review scope based on the research questions and were formulated as decision 

statements. Thus, inclusion criteria covered that the publications are written in 

German or English and that the focus of the publication is on 3DOD methods and 

solutions, whereas the exclusion criteria assured to remove duplicates and that the 
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publication is not a survey or an introduction of a new dataset. By applying these 

criteria, 560 results could be excluded from further processing. 

In a second stage, more fine-grained criteria were defined and all full texts were 

screened to assign the remaining 146 results to the classes relevant, supporting and 

irrelevant. The relevant class covered the most important articles and served as the 

main sources, as they describe end-to-end solutions for 3DOD (83 items), that is 

solutions that describe components along the entire 3DOD processing pipeline. 

Supporting articles contain important partial information alongside this pipeline and 

concentrate on specific components, such as data preprocessing, feature engineering 

or specific network architectures (40 items). They were used to back up certain 

statements and ideas presented within the relevant articles. The irrelevant class turned 

out to be unimportant for this work when screening the full texts (23 items). 

Consequently, the 83 relevant studies were used for the subsequent step of the 

taxonomy development (cf. Appendix, Table 2). 

3.2 Taxonomy Development 

For the systematization of the identified results, we chose a taxonomy development 

approach. Generally, taxonomies serve as a viable tool for organizing knowledge in a 

structured manner and manifesting descriptive theories [17]. For this purpose, they 

enable researchers to study the relationship among concepts and help to analyze and 

understand complex domains [18]. 

Particularly, to carry out the taxonomy development, we applied the method 

proposed by Nickerson et al. [8] as it provides systematic guidance. It basically 

consists of three steps: i) determining a meta-characteristic, ii) specifying ending 

conditions, and iii) identifying dimensions and characteristics of the taxonomy. 

The meta-characteristic is the root element, as it serves as a foundation for the 

choice of all other characteristics. Thus, it was defined in accordance with our 

research goal to identify characteristic components of 3DOD solutions. The 

specification of ending conditions, on the other hand, is required due to the iterative 

method character. For this purpose, certain subjective criteria must be fulfilled, e.g., 

that a taxonomy is sufficiently robust to contain enough dimensions and 

characteristics to separate between the objects of interest, while it is sufficiently 

concise to not exceed the cognitive load of the taxonomy user [8]. Moreover, the 

method requires the specification of objective ending conditions, e.g., that every 

characteristic within its dimension is unique and not repeated. At this point, we 

adopted the following four criteria for our approach: i) all objects were examined, ii) 

at least one object can be assigned for each characteristic across all dimensions, iii) no 

new dimensions or characteristics were added in the last iteration, and iv) no 

dimensions or characteristics were modified in the last iteration. 

The actual step of identifying dimensions and characteristics can then be carried 

out either with an empirical-to-conceptual (E2C) or a conceptual-to-empirical (C2E) 

path. We applied a combination of both paths by running several iterations until all 

ending conditions were met. More specifically, we followed the suggestion from 

Zschech [19] to consider principal phases of procedure models from the field of data 
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mining such as CRISP-DM when extracting taxonomic dimensions and 

characteristics. Such procedure models are basically divided into aspects related to 

domain properties, data properties, data preparation steps, modeling techniques and 

evaluation criteria [20]. Thus, this distinction serves as a helpful orientation, since 

any kind of predictive modeling or supervised ML solution can be well described and 

structured on this basis. 

Accordingly, in a first iteration, all 83 documented solutions were differentiated 

according to the addressed domain objects by applying an E2C-path. This was done to 

support the understanding of business goals and addressed sectors. While most 

articles specifically focus on one particular domain, some approaches also provide 

comprehensive solutions to cover a broader variety. In the next two iterations, we 

extracted relevant data properties of the developed solutions, which could be 

organized within the two dimensions dataset and sensor. For the first dimension, we 

applied an E2C-path classifying empirically observed datasets. For the sensor 

dimension, on the other hand, we applied the categorization suggested by Arnold et 

al. [6] distinguishing between monocular cameras, stereo cameras and LiDAR 

sensors, which could also be confirmed empirically. In a fourth iteration, we 

considered all data representation alternatives by applying a C2E-path based on the 

understanding of Arnold et al. [6]. Thus, methods for 3DOD solutions can either be 

based on monocular images, point clouds or a fusion of these modalities. Moreover, 

point clouds could further be subdivided into three sub-categories, which will be 

discussed in the result section. In a fifth iteration, we empirically extracted different 

modeling techniques reflecting the role of deep neural networks vs. handcrafted 

feature modeling. We then proceeded in the sixth iteration to extract different types 

of evaluation criteria for 3DOD model assessment based on another E2C-path. 

Finally, in a last iteration, all studies were screened again and since no more 

modifications occurred, all ending conditions were met to complete the taxonomy 

development process. 

4 Results 

4.1 Quantitative Overview 

A quantitative analysis of the identified literature corpus reveals that the 83 studies 

have been published between 2012 and 2019 (cf. Figure 1). While the majority of 

studies (45 publications) are part of conference proceedings, only 8 studies have been 

published in journals. The remaining 30 studies are currently only available as 

preprints on arXiv, waiting for their approval through peer review. Moreover, it is 

noticeable that the number of studies tremendously increased within the last six years 

with a remarkable jump from 9 articles in 2017 to 23 articles in 2018 and up to 36 

articles in 2019, which illustrates the growing interest and rising importance of the 

emerging field. 
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Figure 1. Number of Publications Proposing Solutions for 3DOD 

4.2 Systematization of 3DOD Solutions via Taxonomic Framework 

In this section, we systematize the field of 3DOD according to our derived taxonomy. 

We briefly describe each characteristic in each dimension and refer to selected 

examples. Additionally, in Table 2 of the Appendix, we list all 83 examined studies 

with their corresponding characteristics. To find the full references for each study, 

please refer to the following link: 

https://www.researchgate.net/publication/337802121 

Table 1. Taxonomy for 3D Object Detection Solutions 

Dimension Characteristics 

Domain Indoor Autonomous Driving Comprehensive 

Dataset NYUv2 SUN RGB-D LineMOD KITTI 

Sensor Data Mono Stereo LiDAR 

Data Preparation 

(Representation) 
Monocular 

Point Cloud 
Fusion 

Projection Volumetric PointNet 

Modeling 
Handcrafted Feature Engineering Deep Learning 

Keypoint Features HOG/COG Feat. Two-Stage One-Stage FE Only 

Evaluation Precision-based Time-based Memory-based 

Domain: Current applications for 3DOD can generally be divided into the two 

domains of autonomous driving and indoor applications, with the first category being 

the more frequently studied domain (54 vs. 24 studies). Moreover, another 5 studies 

also provide comprehensive solutions that do not focus on a specific scenario. A 

fundamental difference between indoor applications and autonomous driving (AD) is 

that objects in environments like apartments or offices are often arranged one above 

the other. Based on this fact, inter-object relationships can be learned to consider 

spatial co-occurrences [21]. Moreover, methods for holistic scene understanding are 

applied to enable a better communication between, e.g., service robots and humans 

[22]. Challenges for indoor applications are that scenes are often cluttered and that 

many objects occlude one another [23]. AD applications, by contrast, are subject to 

long distances to potential objects and difficult weather conditions, including snow, 

rain and fog [6]. Objects also occlude one another, but due to the observation that 

objects like cars, pedestrians and traffic lights are unlikely to be positioned on top of 
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each other, techniques such as the bird’s-eye view projection of a scene can 

efficiently compensate for this effect [24, 25]. 

Datatset: The second dimension refers to applied datasets that are used to train 

and, in most cases, evaluate 3DOD solutions. Here, it can basically be distinguished 

between three datasets representing indoor scenes, i.e., NYUv2 [26], SUN RGB-D [27] 

and LineMOD [28], whereas the KITTI dataset [29] focuses on street environments. 

The goal of NYUv2 and SUN RGB-D is to encourage methods focused on total scene 

understanding. The datasets got recorded using four different RGB-D sensors to 

ensure the generalizability of applied methods for different sensors. Even though, 

SUN RGB-D inherited the 1449 labeled RGB-D frames from the NYUv2 dataset, it is 

still occasionally used by nowadays contributions. SUN RGB-D consists of 10.335 

RGB-D images that are labelled with 146.617 2D polygons and 64.595 3D bounding 

boxes with accurate object orientation measures. The LineMOD dataset focuses on 

individual objects in cluttered environments. It consists of 13 RGB-scenes of an 

object of interest and the corresponding 6DoF ground truth labels as well as 

computer-aided design (CAD) models. KITTI consists of stereo images, LiDAR point 

clouds and GPS coordinates, all synchronized in time. Recorded scenes range from 

highways, complex urban areas and narrow country roads. For 3DOD, KITTI 

provides 7.481 training and 7.518 test frames, including sensor calibration 

information and annotated 3D bounding boxes around the objects of interest. KITTI is 

by far the most frequent used dataset with 59 studies. Of the three datasets that 

address indoor applications, SUN RGB-D is the most commonly used dataset 

followed by NYUv2 and LineMOD (15/8/4 studies). 

Sensor: The next dimension covers the specific sensor data selected from the 

datasets, which are used for subsequent modeling. Here, either conventional 

monocular sensor data is used (45 studies) or depth data from stereo (30 studies) or 

LiDAR sensors (34 studies). As it can be noticed by the numbers, some solutions are 

even based on multiple sensors for the purpose to improve detection results (e.g., [5]). 

While LiDAR sensors generally have the advantage to provide highly precise depth 

information, simpler image sensors are significantly cheaper, they can capture scenes 

up to 100 meters, and they are often already in use in operating environments [30, 

31]. 

Data Representation: Based on the way data is represented, 3DOD solutions can 

be subdivided into three basic approaches: Monocular-based, point-cloud-based and 

fusion-based methods [6]. Monocular-based methods utilize RGB images acquired by 

monocular cameras to predict 3D bounding boxes. Since depth data is not available, 

most approaches first detect 2D candidates before predicting a 3D bounding box 

representing the object. This is done using either neural networks (e.g., [32]), 

geometric constraints (e.g., [33]) or 3D model matching (e.g., [34]). Point-cloud-

based methods are based on point clouds that are either generated by LiDAR sensors 

or stereo cameras. They can be further subdivided into projection, volumetric and 

PointNet methods [6]. Some approaches project point clouds onto depth maps (also 

called front-view projection) (e.g., [35]), while others project them onto the ground 

plane using bird’s-eye projection techniques (e.g., [24]). Volumetric methods first 

encode point clouds to a sparse, volumetric voxel grid before processing them (e.g., 
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[36]). Approaches utilizing the PointNet-architecture [37] process raw point clouds 

without the need of projection or voxelization (e.g., [38]). Fusion-based methods 

combine two or more sensor inputs to improve the overall performance of 3DOD 

(e.g., [5]). Most approaches can further be classified as either early fusion, late fusion 

or deep fusion [15]. In early fusion, the different sensor inputs are combined at the 

beginning of the pipeline. This results in a new representation that is dependent on all 

inputs. When performing late fusion, the sensor inputs are processed independently up 

until the last stage in the pipeline. This results in a complete or partial autonomy of 

the particular input channels. Accordingly, deep fusion allows an interaction of the 

input modalities at several stages within the architecture. This enables the exchange 

and adjustment of features from different input types resulting in a better model 

generalizability [15]. Even though, monocular-based methods utilize no depth 

information, they are commonly applied (21 studies). Considering the different point-

cloud-based methods, projection and volumetric approaches are used far more often 

than PointNet-based methods (19/14/5 studies). However, fusion-based methods often 

use point cloud data processed by PointNets in combination with monocular or even 

other point-cloud-based inputs (24 studies). 

Modeling: In the modeling step, the input data in their respective representation 

format are used together with annotated label information (i.e., 3D bounding boxes) to 

train a 3DOD model in a supervised learning manner. For this purpose, different 

methods are applicable, where it can basically be distinguished between approaches 

based on handcrafted feature engineering and deep learning (DL). For the first 

category, it is necessary to first define features and then use algorithms like support 

vector machines for the classification task. Handcrafted 3DOD features are either 

based on keypoints (i.e., remarkable points that best describe an object) or histograms 

of oriented gradients (HOG) in 2D spaces and its counterpart clouds of oriented 

gradients (COG) in 3D spaces, where the appearance and the shape of objects can be 

represented by the distribution of the local intensity of edges and corners. Both groups 

are severely underrepresented (2 vs. 5 studies) and mainly applied by older studies. 

DL techniques, on the other hand, can perform object detection without manually 

defining specific features in advance due to their ability of automatic feature 

extraction (FE). They are based on different kinds of convolutional neural networks 

(CNN), where the complete 3DOD pipeline is either organized as a one-stage (16 

studies) or a two-stage (52 studies) architecture. The latter consists of an additional 

stage where possible object regions are proposed to reduce the search space in an 

image before the actual detection takes place. This can increase the accuracy, while 

simultaneously being more time consuming. Apart from both variants, there is also a 

minority of 2 studies that exploits the strengths of CNNs only for the dedicated task of 

feature extraction. 

Evaluation: The last dimension comprises different categories of evaluation 

criteria. Since most datasets extracted within the dataset dimension primarily serve as 

benchmark instances, the majority of 3DOD solutions (82 studies) is evaluated on the 

basis of precision-based metrics, such as the average precision as introduced at the 

Pascal VOC Challenge [39]. Another large proportion of articles (52 studies) is also 

assessed via time-based evaluations. Of particular interest here is the inference time, 
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indicating how long a trained model requires to detect the objects of interest. A last 

evaluation category refers to the required memory usage of the trained model, which 

plays an increasing role in the context of mobile applications [40]. However, only one 

study explicitly measured required memory usage [41]. 

5 Conclusion, Discussion and Outlook 

In this paper, we developed a systematization for 3DOD end-to-end solutions by 

applying a taxonomy approach to reach better transparency and decompose complex 

solutions into more manageable pieces. Reflecting the results of this research, we 

contribute to the research field of 3DOD in several ways: First, we extended the 

survey of Arnold et al. [6] by a more recent scope with a broader domain focus and by 

a comprehensive categorization of all identified 3DOD solutions using a classification 

matrix (cf. Appendix). This helps the community to get an overview of current trends, 

where it becomes apparent, for example, that DL methods have surpassed methods 

that rely on hand-crafted features. Second, by applying a taxonomic approach, it was 

possible to decompose the complexity of methods for 3DOD to a certain degree, 

which is necessary for future efforts to compare novel solutions on a more fine-

grained basis. By employing the method of Nickerson et al. [8], a number of useful 

dimensions and characteristics could be extracted, including addressed domain, 

dataset, sensor, the overall data representation, modeling techniques and evaluation 

criteria. Thus, the taxonomy delivers an overview about different design options and 

provides a setting to position individual configurations of novel solutions on a more 

comparable basis. 

Our work has also some limitations. Due to the recent public interest in 

autonomous vehicles and indoor service robots, 3DOD studies have drastically 

increased in the last two years. Therefore, many studies have not been peer-reviewed 

yet and thus are only available as preprints, making their final validity somewhat 

doubtful. Another limitation is the organization of several 3DOD solution components 

within a simplified framework, which was also noted by previous taxonomy 

developers in other analytical scenarios (e.g., [19]). Here, we were faced with a fine-

grained diversity of different design options, particularly for neural network 

architectures based on varying network topologies, filter kernels, activation and loss 

functions, etc., which were difficult to be transferred into a flat taxonomy structure. 

At this point, it seems more reasonable to allow hierarchical, tree-like categorizations 

or even create sub-taxonomies for several dimensions. Nevertheless, we are still 

confident that we reached a suitable level of abstraction which can currently help 

researchers and practitioners to get a quick overview about the field and organize 

3DOD solutions within a structured framework. A last limitation concerns the 

external evaluation of the taxonomic structure. For this purpose, we plan to conduct 

interviews with experts from industry to further refine or extend the taxonomy with 

additional insights. As such, it is also conceivable to consider other sources of 

interest, such as patents or existing products on the market. 
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In future research, the results will be used to carry out a cluster analysis on the 83 

classified studies to identify recurring patterns. Thus, it is intended to find archetypal 

solutions based on commonly applied combinations and derive prescriptive 

knowledge towards the creation of preconfigured templates. Moreover, we will use 

the framework to conduct systematic benchmarking studies following the idea of 

Zschech et al. [18], where the taxonomic elements serve as evaluation options to be 

iteratively modified under ceteris paribus conditions. In this way, it is planned to 

establish a better understanding to what extent certain components affect the results of 

3DOD solutions. 
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Table 2. Application of the Taxonomy on Reviewed Studies 
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Authors 
 

Ref. 
 

Pseudonym 

(* given by the authors of this paper) 

1 Fidler et al. (2012) [42] 3DCuboidDPM*   x    x x   x         x x   

2 Lin et al. (2013) [21] 3D-CPMC* x    x    x    x        x x  

3 Song and Xiao (2014) [43] Sliding Shapes x    x    x    x     x   x   

4 Tejani et al. (2014)  [44] L-C HoughForest* x     x   x   x       x  x   

5 Teng and Xiao (2014) [45] SB-3D* x        x   x       x  x   

6 Chen et al. (2015)  [46] 3DOP  x     x  x   x    x     x x  

7 Crivellaro et al. (2015)  [47] Cluttered3DPose* x       x   x     x        

8 Geiger and Wang (2015)  [48] Joint3D* x    x    x   x         x x  

9 Zia et al. (2015)  [49] 3DRepresentations*  x     x x   x          x   

10 Chen et al. (2016)  [32] Mono3D  x     x x   x     x     x   

11 Kehl et al. (2016) [50] Patch3D* x     x   x   x     x    x x  

12 Li (2016) [51] 3D-FCN*  x     x   x   x    x    x x  

13 Li et al. (2016) [52] VeloFCN  x     x   x  x     x    x   

14 Ren and Sudderth (2016)  [53] 3D-COG 1.0* x   x     x    x       x x x  

15 Song and Xiao (2016)  [54] DSS x   x x    x    x   x     x x  

16 Chabot et al. (2017)  [55] Deep MANTA  x     x x   x     x     x x  

17 Chen et al. (2017)  [15] MV3D  x     x x  x     x x     x   

18 Deng and Latecki (2017)  [56] Amodal3D* x    x   x x      x x     x   

19 Engelcke et al. (2017)  [57] Vote3Deep  x     x   x   x    x    x x  

20 He et al. (2017) [58] 3DTemplateMatch* x     x   x   x         x   

21 Kim and Kang (2017) [59] CCD R-FCN*  x     x x  x     x x     x   

22 Kim et al. (2017)  [60] 3DMulti-Frame*  x     x   x  x    x     x   

23 Lahoud and Ghanem (2017) [61] 2D-3D* x   x    x x      x x     x x  

24 Mousavian et al. (2017)  [33] Deep3DBox  x     x x   x     x     x   

25 Beltrán et al. (2018) [24] BirdNet  x     x   x  x    x     x x  

26 Chen et al. (2018)   [62] TwoStream3D*  x     x  x   x    x     x x  

27 P. d. l. Garanderie et al. (2018)   [63] 360Panoramic*  x     x x   x     x     x   

28 Huang et al. (2018)   [22] 3D-OLC* x   x    x   x     x     x x  

29 Ku et al. (2018)   [64] AVOD  x     x x  x     x x     x x  

30 Liang et al. (2018)   [65] DeepContinousFusion*  x     x x  x     x x     x x  

31 Liu et al. (2018) [66] 3D SS x   x     x    x       x x x  

32 Maisano et al. (2018)   [41] MobileNet-3D* x    x   x x      x x     x x x 

33 Qi et al. (2018)   [5] Frustum PointNets   x x   x x x x     x x     x x  

34 Ren et al. (2018)   [67] C3D x   x    x x      x x     x   

35 Ren and Sudderth (2018)   [68] 3D-LSS* x   x     x    x       x x x  

36 Shi et al. (2018)  [69] PointRCNN  x     x   x    x  x     x x  

37 Shin et al. (2018)   [70] RoarNet  x     x x  x     x x     x   

38 Sun et al. (2018)   [36] 3D-CNN* x   x x    x    x    x    x x  
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39 Wang et al. (2018) [25] FuseBEV-FV*  x     x x  x     x  x    x x  

40 Xu and Chen (2018)   [71] 3D-MLF*  x     x x   x     x     x x  

41 Xu et al. (2018) [72] PointFusion   x x   x x x x     x x     x x  

42 Yamazaki et al. (2018)  [73] 3D-CORR* x        x   x         x x  

43 Yan et al. (2018)  [74] SECOND  x     x   x   x   x     x x  

44 B. Yang et al. (2018)  [75] PIXOR  x     x   x  x     x    x x  

45 Z. Yang et al. (2018)  [76] IPOD  x     x x  x     x x     x x  

46 Zeng et al. (2018)   [77] RT3D  x     x   x  x    x     x x  

47 Zhou and Tuzel (2018)  [78] VoxelNet  x     x   x    x   x    x x  

48 Ali et al. (2019)  [79] YOLO3D  x     x   x  x     x    x   

49 Barabanau et al. (2019) [80] Keypoint3D*  x     x x   x     x     x   

50 Brazil and Liu (2019) [81] M3D-RPN  x     x x   x     x     x x  

51 Chen et al. (2019) [82] Cooper  x     x x     x   x     x   

52 Ferguson and Law (2019)  [83] Object R-CNN* x        x   x    x     x   

53 Gupta et al. (2019)   [84] KeypointCBF*  x     x x   x      x    x   

54 Huang et al. (2019)   [85] 3DRestoration*  x     x x x        x x     x   

55 Jörgensen et al. (2019) [31] SS3D  x     x x    x      x    x x  

56 Ku et al. (2019) [86] MonoPSR  x     x x     x     x     x x  

57 B. Li et al. (2019) [87] GS3D  x     x x   x      x    x x  

58 M. Li et al. (2019)  [88] Complex-Retina  x     x x  x     x  x    x x  

59 P. Li et al. (2019) [89] Stereo R-CNN  x     x  x   x    x     x x  

60 X. Li et al. (2019) [90] 3DBN  x     x   x   x   x     x x  

61 Liu et al. (2019) [91] FQNet  x     x x   x     x     x x  

62 Lu et al. (2019) [92] SCANet  x     x x  x     x x     x x  

63 Ma et al. (2019) [93] Color-Embedded3DRecon*  x     x x   x     x     x   

64 Meyer et al. (2019a) [94] SensorFusion*  x     x x  x     x x     x   

65 Meyer et al. (2019b) [95] LaserNet  x     x   x  x     x    x   

66 Naiden et al. (2019) [96] ShiftNet  x     x x   x     x     x x  

67 Pamplona et al. (2019)   [97] On-road3D*  x     x   x    x  x     x   

68 Qi et al. (2019) [38] VoteNet x   x     x     x  x     x x  

69 Qin et al. (2019) [35] TLNet  x     x  x   x    x     x   

70 Ren and Sudderth (2019) [23] 3D-COG 2.0* x   x     x    x     x  x x x  

71 Shi et al. (2019) [98] Part-A^2 Net  x     x   x    x  x     x x  

72 Simon et al. (2019a)  [99] Complex-YOLO  x     x   x  x    x     x x  

73 Simon et al. (2019b) [100] Complexer-YOLO  x     x x  x     x  x    x x  

74 Simonelli et al. (2019) [101] MonoDIS  x     x x   x      x    x x  

75 Sindagi et al. (2019) [102] MVX-Net  x     x x  x     x  x    x x  

76 Srivastava et al. (2019) [103] 3D-GAN*  x     x x       x x     x   

77 Tang and Lee (2019) [104] Transfer3D*   x x   x x x x     x x     x   

78 B. Wang et al. (2019) [105] Voxel-FPN  x     x   x   x   x     x x  

79 L. Wang et al. (2019)   [106] 3D MC-CNN* x   x x   x x      x x     x x  

80 Wang and Jia (2019) [107] F-ConvNet   x x   x x x x     x x     x x  

81 Weng and Kitani (2019) [30] PseudoLidar*  x     x x   x     x     x   

82 Zakharov et al. (2019) [34] DPOD x     x  x   x      x    x x  

83 Zhou et al. (2019) [108] FVNet  x     x   x     x x     x x  

Total Number of Coverage 24 54 5 15 8 4 59 45 30 34 21 19 14 5 24 52 16 2 2 5 82 52 1 
  

https://doi.org/10.30844/wi_2020_r2-friedrich


	1 Introduction
	2 Conceptual Background and Related Work
	3 Research Method
	3.1 Systematic Literature Review
	3.2 Taxonomy Development

	4 Results
	4.1 Quantitative Overview
	4.2 Systematization of 3DOD Solutions via Taxonomic Framework

	5 Conclusion, Discussion and Outlook
	References
	Appendix



