
15th International Conference on Wirtschaftsinformatik, 

March 08-11, 2020, Potsdam, Germany 

A Subscription Service for Automated Communication 

and Fair Cost Distribution in Collaborative Blockchain-

based Business Processes 

Moritz Schindelmann
1
, Philipp Klinger

1
, Freimut Bodendorf

1
 

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Wirtschaftsinformatik, 

insb. im Dienstleistungsbereich, Nürnberg, Germany

{moritz.schindelmann, philipp.klinger, freimut.bodendorf}@fau.de 

Abstract. Blockchain capabilities like Ethereum Smart Contracts offer great 

opportunities to manage cross-organizational business processes due to their 

trustless and tamperproof nature. However, communication in such processes 

poses a major issue since there is no direct option for one participating 

organization to inform other collaborators about their individual progress in 

their impersonation as a Smart Contract. As that knowledge is vital to execute a 

cross-organizational process, we design a Smart Contract architecture in which 

participants express their progress through Blockchain events. Furthermore, we 

implement a prototype that subscribes to the relevant events of one or more 

participants and reacts to their occurrence by triggering the subsequent step(s) 

of the process. Evaluation of the prototype and architecture shows that this does 

not only avoid unnecessary latency in process communication but also results in 

a fair cost distribution as each participant is only charged for the expenses of its 

individual actions.  

Keywords: Blockchain, Ethereum, Business Process Management, Cross-

Organizational Collaboration.  

1 Introduction  

While Business Process Management promises great potential for cross-

organizational processes, the use of such management systems is heavily restrained 

by the lack of mutual trust between process participants [1]. Blockchain-based 

solutions help to overcome that issue by building execution engines that enable 

running business processes in a trustless and tamperproof manner. The business logic 

of a process is thereby modeled through Smart Contracts stored on the Blockchain 

[2]. The conversion from a process model in BPMN to Smart Contracts should be 

abstracted from the user [3]. The basic idea is to run a translation algorithm during 

design time that parses and transforms BPMN into Smart Contract code [4]. 

Comparable solutions use choreography diagrams [5] or orchestration diagrams [4] as 

a starting point while modeling. Contrary, we choose to focus on collaboration 

models that require no further conversion before translation to Smart Contracts. As a 

https://doi.org/10.30844/wi_2020_r13-schindelmann

mailto:%7bmoritz.schindelmann,%20philipp.klinger,%20freimut.bodendorf%7d@fau.de


consequence, processes are easier to integrate into existing process-aware information 

systems. Also, participants may decide which process segments to execute using the 

Ethereum Blockchain. Per participant, that should be executed on-chain, one Smart 

Contract is created to respect the organizational boundaries in a collaborative process 

[4]. When executing such a process, the participants must communicate with each 

other. Contracts need to be invoked by other contracts (that may be traced back to a 

user-signed transaction in the first place) or directly user-signed transactions [6]. 

Good contract design is key to ensure cost-fairness amongst participants when 

executing the contracts. No participant should have to pay for actions of others. The 

effect of unnecessary expenses for a subset of participants should not be 

underestimated because fair cost distribution is vital in a collaboration of distinct 

organizations. If costs are unfairly distributed and incentives for execution do not 

align, companies are likely to avoid Blockchain-based solutions as additional and 

unfair costs would outweigh the Blockchain’s benefits. 

The goal of this paper is to answer the following research question: How can we 

automate process communication whilst maintaining a fair cost distribution in 

Blockchain-based business process execution? 

We follow the Design Science Research (DSR) approach in order to answer the 

proposed research question. DSR is a research design distinguishing five phases, 

namely presentation of a problem, conception of its solution, implementation of a 

software artifact, its evaluation, and a conclusion. Every step of the design can yield 

new or more precise information and therefore lead to a new research iteration [7]. 

The solution put forth in this paper uses Smart Contract Events as a focal point. On 

Ethereum, we use a Smart Contract architecture that utilizes the events to log 

completed process actions of the participants. Off-chain, we implement a Subscription 

Service (SS) prototype that can dynamically subscribe to an arbitrary number of 

participants [and their emitted events]. If one of the subscribed participants emits an 

event, the service will analyze its content and trigger the subsequent step(s) of the 

business process. The service is evaluated by simulating an exemplary business 

process, tracking the metrics process latency and cost distribution, and comparing the 

results to those of an alternative approach for automating the process communication.  

The remainder of this paper is structured as follows. In section 2, we provide the 

fundamental information about Blockchains and business processes on which the 

concepts of section 3 are based on. In section 4, we present the Subscription Service 

prototype. After evaluating the SS in section 5, we contrast our research question and 

the evaluation results of our prototype in section 6 and draw a conclusion.  

2 Background 

2.1 Blockchain and Smart Contracts 

The Blockchain technology, first proposed by Nakamoto in the context of the Bitcoin 

cryptocurrency [8], is a distributed ledger in a peer to peer network. Peers are referred 

to as nodes and are equally responsible for storing the chain as a local copy and 

https://doi.org/10.30844/wi_2020_r13-schindelmann



participating in the consensus mechanism to create new blocks, consequently 

achieving decentralization. Blocks are the data structure of the technology storing 

transactions and holding meta-data that links a block to the prior chain 

cryptographically with the predecessor’s hash value. As the hash of every block is 

computed using information not only about its stored transactions but also about the 

previous blocks and the overall chain (e.g. its length), a manipulation of single 

transactions or entire blocks would lead to an incorrect hash making the error 

detectable, thus the data structure is described as immutable and tamperproof [9].  

Ethereum allows storing executable programs, called contracts, initially written in 

Solidity. Contracts are stored in the form of bytecode, which is interpreted by the 

Ethereum Virtual Machine [10]. Interaction with deployed Smart Contracts requires 

their application binary interface (ABI) to encode the invocation from machine- into 

human-readable code and vice versa [11]. 

Contracts can either be invoked by call or transaction. While calls are limited to 

read operations, transactions execute state changes on-chain. Both transactions and 

calls can be initiated by a Smart Contract or an Externally Owned Account (EOA), 

but an initiating transaction must always be started by the latter. Ethereum also offers 

Smart Contract Events to log arbitrary data when performing transactions that might 

either provide extra information or simply improve traceability of one or more 

operations. Event arguments and their emitting Smart Contract addresses are stored in 

the transaction log which can be accessed by applications and interfaces [10]. 

2.2 Business Processes  

A business process is a concatenation of coordinated activities that aim to realize a 

business goal [12]. No matter if cross-organizational or company internal, the better a 

process is structured and executed, the better is the resulting quality of its 

performance. Business process management systems (BPMS) use graphical elements 

to model processes and allow analysis, execution, monitoring, and evaluation with the 

use of their models [13]. There has been a recent uptake in Blockchain-based process 

execution endeavors based on Business Process Model and Notation (BPMN) 

diagrams [2, 4, 14]. 

2.3 Related Work 

Management of cross-organizational business processes is often characterized by the 

lack of mutual trust and Blockchain-based solutions can be used to overcome that 

barrier [2]. Approaches range from process verification with the Bitcoin Blockchain 

[15] to monitoring and execution of processes based on Ethereum. Latest efforts 

either use standard BPMN notation [3], extend the BPMN standard [5, 16, 17], use 

other declarative workflow models [18], or rely on new modeling languages [19, 20].  

The most widespread concept is based on Ethereum and works with (some form 

of) BPMN. In order to mimic the process flow, the business logic of a process model 

is converted to one or more Smart Contracts. Authors of [4] propose an important 

cornerstone, as they present an algorithm to automatically translate a choreography 

https://doi.org/10.30844/wi_2020_r13-schindelmann



process model into Smart Contracts. Further works either also rely on choreographies 

[4, 5, 21], use single pools [22, 23], or translate the process models into state charts 

prior to Smart Contract conversion [24]. [4, 14, 24] are similar to our approach as 

Ethereum Events are used to log process states. However, none of the solutions work 

with Smart Contract Events to enable an optional service to automate process 

handovers in collaborations. A key benefit of our approach compared to previous 

works is, that no more conversion of the BPMN diagram is required. Furthermore, a 

process must not be performed entirely on-chain, thus integration of scenarios 

wherein only some participants rely on Blockchain-based execution is simplified.  

Apart from related work in the context of process execution, the Subscription 

Service can also be associated with oracle services. The common purpose of oracles is 

to bring off-chain data onto the Blockchain to enable processing of real-world 

information [25]. Our service is different from a common oracle as the transferred 

information originates on the Blockchain. 

3 Blockchain-based process execution with the Subscription 

Service 

3.1 Smart Contract architecture for process models 

The design of our Smart Contract architecture [26] distinguishes static build time and 

dynamic runtime contracts that either represent a collaboration or a participant. The 

static build time contracts are abstract classes providing basic data structures, 

functions, and events that are required for any given process. For every specific 

business process, a new set of contracts, containing one collaboration contract and 

one participant contract for every process collaborator, is implemented that fills the 

abstracts with the business logic of the individual process. For collaboration contracts, 

that means populating the data structures with the addresses of the participant 

contracts and the used instances. In contrast, participant contracts extend the 

structures and functions of the implemented interface with functions representing 

different steps a collaborator can execute. During the translation of the BPMN 

diagram into Smart Contracts, execution steps are equipped with a logging 

functionality using Ethereum Events. 

 

https://doi.org/10.30844/wi_2020_r13-schindelmann



Figure 1. Simplified Smart Contract architecture based on [26] 

Due to space limitations of this paper, we want to focus on explaining how our 

architecture accomplishes “compliance by design” [23], which prevents the Smart 

Contracts from performing actions that would be contrary to the logic of the modeled 

business process. Compliance is vital for our execution engine because the 

Subscription Service is an off-chain application and therefore possibly vulnerable to 

manipulation [25]. When an event is emitted by a subscribed participant contract, the 

SS initially checks that the event was sent by the expected participant, concerns a 

relevant process step, and has a valid process instance. If all that information is 

correct, the Subscription Service starts a transaction to call a function that represents 

the subsequent process step of another participant, thereby forwarding the event’s 

information. To allow Smart Contracts to assure the function execution is conform to 

the business process, collaborations and their according participants are 

bidirectionally linked to each other. Furthermore, the collaboration contract holds two 

structures (among others), one for managing valid active process instances and 

another for keeping track of the progress of each participant in each process instance. 

These data structures allow a participant contract to assure three premises before 

executing a function. First, the participant reviews if the process instance, contained 

in the transaction, is valid. Second, the participant assures that it is in the correct state 

to execute the desired step, meaning that he has completed the prior process step but 

not yet started any later ones. Third, the participant confirms that the suggested event 

has actually taken place by reviewing the progress of the collaborator and examining 

that he has completed the logged process step in the transmitted process instance. 

3.2 Standardized process fragmentation through wait states 

Individual process parts must be separated into process steps to achieve the capability 

to programmatically define how process participants collaborate. For this purpose, 

wait states are a convenient concept to segment processes comprehensibly and 

consistently. A wait state describes a process milestone when a participant pauses its 

activities until it receives an external signal. That signal can be a user task that needs 

to be performed, an incoming event, or an incoming message [27]. 

https://doi.org/10.30844/wi_2020_r13-schindelmann



 

Figure 2. Wait states in an example process  

As illustrated in Fig. 2, the application of the wait state concept onto a BPMN 

diagram results in at least one wait state for every participant as the interactions 

between the collaborators through message tasks or events always imply the border of 

a wait state. There are two basic approaches for automating the communication 

between participants, which we shall further refer to as “pushing” and “pulling”. 

Pushing a process means actively starting the actions of another collaborator. In the 

context of our Blockchain-based system, that results in additional costs for the 

pushing participant as he is responsible for the expenses of the started activities. If the 

pushed participant’s actions are all in a single wait state like the Regional Branch’s in 

Fig. 2, that leads to an extreme cost divergence as the Headquarter has to pay for all 

of the Regional Branch’s activities. In contrast, pulling the messages creates a 

reasonable share of the expenses. However, if one was trying to implement this 

concept solely with Smart Contracts, it would require contracts to constantly check 

the states of each other. As such cycling Smart Contracts cannot be implemented due 

to Ethereum’s transaction model, an external application must take over this role 

instead, which is achieved by the Subscription Service in our case.  

3.3 Storage of process data used by the Subscription Service 

In order to allow the Subscription Service to understand how the collaborators and 

their wait states are connected in the business process, meta-data is needed. This 

meta-data comprises process- respectively message-flow information, as well as on-

chain information like contract addresses, function signatures, and event signatures. 

Since data storage is expensive on Ethereum, we choose to store this meta-data in a 

local database for prototyping. This is a feasible approach, since the SS runs as a local 

(off-chain) component, too. The key information must be stored as follows. For each 

participant of every business process, every wait state must be stored that is 

subsequent to a message from a collaborator. It must be known what function 

signature on which contract address is represented by that wait state. Also, it must be 

comprehensible which event signature on which Smart Contract represents the 

https://doi.org/10.30844/wi_2020_r13-schindelmann



message of the collaborator that the wait state’s execution is dependent on and which 

content the emitted event is required to contain. All this information is directly 

extractable from the given BPMN diagram. 

4 Implementation 

4.1 Architectural Overview 

Once collaborators have mutually agreed on a certain BPMN process, the diagram is 

consumed by the BPMN-XML-Parser and the Transpiler. The latter translates the 

process logic into Smart Contract code. It caches the contracts’ bytecode, ABIs, and 

stores the deployment address in the participants’ local artifact repositories. The 

BPMN-XML-Parser detects and extracts dependencies between the collaborators that 

are also stored in the participants’ databases for further use by the Subscription 

Service. 

Every participant disposes a local Subscription Service that it can use for any given 

collaboration stored in the environment in Fig. 3. 

 

Figure 3. System architecture based on [26] 

4.2 Core functionality of the Subscription Service 

Our service uses Ethereum as an event store and relies on a Publish-Subscribe pattern 

[28] which distinguishes two roles. The publisher, a Smart Contract implementing the 

business logic, expresses information by emitting meaningful events to the Ethereum 

event log. A subscriber, which can be seen as our SS, is interested in certain content 

and therefore subscribes to specific publishers to consume the data of their emitted 

events. The Subscription Service uses this pattern to model process communication 

by receiving events and triggering subsequent process steps. The great advantages of 

this approach are the decentralization, immutability, longevity, and traceability of the 

store and its events as the data is protected by the Ethereum Blockchain.  

https://doi.org/10.30844/wi_2020_r13-schindelmann



 

Figure 4. Exemplary command for starting the Subscription Service 

1. C_COLLAB: The first flag of the command expects the collaboration 

contract’s deployment address. Every SS instance is only responsible for one 

collaboration, although multiple SS instances may run simultaneously. 

2. C_PARTS: Participants, whose communication shall be automated by the SS 

instance, are identified by their respective ID attribute in the BPMN diagram. 

At least one participant is required, there is no upper limit. 

3. N_HOST & N_PORT: Ethereum node endpoint connectivity information. 

4. PAY_ADD: EOA used for transaction expenses by the SS. Accepts only one 

paying address argument per SS instance. 

Initialization. When starting the Subscription Service, a connection to the given 

endpoint is established. Then, internal data structures for the interaction with the 

Smart Contracts of the collaboration and participants are initialized. The SS queries 

the relevant given participants’ events from the local artifact repository. If no 

dependencies exist, the SS terminates. Otherwise, the service subscribes to events 

relevant for communication and waits for their occurrence.  

Event occurrence. When a participant contract emits an event to communicate 

that a certain wait state is completed, the subscribed SS extracts its content. The 

service requires information about which process the participant belongs to (contract 

address of the collaboration), which participant logged the event (contract address of 

the participant), which process instance it concerns (ID of the process instance) and 

finally which wait state’s completion the event communicates (unique label of the 

wait state). Based on this information, the service initially reviews if any relevant 

participant is depending on the logged wait state. In that case, the SS performs a 

quality check to confirm that the wait state was executed by the expected participant, 

concerns a valid and active process instance, and is connected to the fitting 

collaboration. Afterwards, the SS queries the database to learn which participant’s 

wait state is supposed to be executed, and which function signature represents that 

state. When all data is assembled, the Subscription Service adds the information to the 

execution queue.  

Execution queue. The queue is a numerically indexed data field that is polled 

regularly. For each observed item, the service checks if the belonging participant is 

ready for the execution of the queued wait state. Since states are represented through 

numerical indexes on the collaboration contract, the Subscription Service can 

determine if the current wait state of the participant is prior, equal, or subsequent to 

the state that shall be executed (desired wait state). Depending on the result of the 

comparison, the service handles the queue item in one of the following three ways. 

1. Current Wait State < Desired Wait State: Keep item in the queue. 

2. Current Wait State = Desired Wait State: Execute the wait state. 

https://doi.org/10.30844/wi_2020_r13-schindelmann



3. Current Wait State > Desired Wait State: Remove item from the queue. 

5 Evaluation and Discussion 

In order to evaluate the latest iteration of our Subscription Service prototype, we 

simulate the execution of a business process, in which the participants want to use the 

BPMS solely for process verification, with a test script. Thereby, the participants are 

impersonated by Smart Contracts. Their actions (in form of functions) mimic the 

activities by changing the active wait state.  

As shown in Fig. 5, the SS test distinguishes regular wait states and states that are 

executed by a Test Trigger. The script progresses through the evaluation process by 

successively trying to execute the triggers. The SS instances of the participants are 

expected to perform the subsequent wait states following a Test Trigger. Thereby, 

costs for the participants and the runtime of the overall process are tracked for each 

test run. To put the acquired results into context, the same Smart Contracts are used 

for a runtime optimized test script that uses the push concept. The difference between 

the two test scripts is that the push test does not only execute the Test Triggers but all 

wait states.  

In terms of costs, our test results show that pushing the process communication 

leads to an unfair distribution, especially between the participants Headquarter and 

Repair Center. While the Repair Center does not pay for any of its actions, the 

expenses of the Headquarter are more than three times as high in comparison to the 

costs for its own activities. The test results of the pull approach show, contrary to the 

push concept, that the SS provides a fair distribution of expenses as each participant is 

responsible for its own actions only. Considering the latency and runtime of the 

process, the push concept is 15 seconds faster. The difference in Test Trigger 3 

originates in the time needed by the SS to process the seven events of the wait states 

following the trigger.  

 

https://doi.org/10.30844/wi_2020_r13-schindelmann



 

Figure 5. Example process used for evaluation of the SS 

Table 1. Results of running the evaluation test scripts 

Pull 
Costs [ETH] 

Total 

[EUR] 

Simulated 

Runtime 

[SEC] 
Headquarter 

Regional 

Branch 

Repair 

Center 
Customer Total 

Trigger 1 0 0.0010320 0 0.0010302 0.0020623 0.36 30 

Trigger 2 0.0010294 0.0007307 0 0 0.0017601 0.31 30 

Trigger 3 0.0007937 0.0014610 0.0018244 0.0022551 0.0063344 1.11 90 

Trigger 4 0 0.0007294 0 0.0012501 0.0019795 0.35 30 

Total 0.0018231 0.0039532 0.0018244 0.0045355 0.0121363 2.13 180 

Push 

Costs [ETH] 
Total 

[EUR] 

Simulated 

Runtime 

[SEC] 
Headquarter 

Regional 

Branch 

Repair 

Center 
Customer Total 

Trigger 1 0 0 0 0.0020623 0.0020623 0.36 30 

Trigger 2 0 0.0017601 0 0 0.0017601 0.31 30 

Trigger 3 0.0063344 0 0 0 0.0063344 1.11 75 

Trigger 4 0 0.0019795 0 0 0.0019795 0.35 30 

Total 0.0063344 0.0037396 0 0.0020623 0.0121363 2.13 165 

Tested with 20GWei Gas, 15 seconds block time, and price assumed to be at 175.43€ per Ether. 

To put these findings into perspective, we must consider the major difference 

between the compared approaches. Pushing interactions between participants is time-

efficient but also hardly applicable in public management systems due to its inability 

to fairly distribute costs between participants. Contrary, the pull concept is a 

reasonable approach that focusses on that exact problem to enable its usage in realistic 

use cases. Therefore, it must be stated that our Subscription Service is outperformed 

(in terms of process latency) by a runtime optimized approach that is not suitable for a 

real-world execution engine. Test results show that the SS should be considered time 

efficient and time-saving because the service automates process communication 

https://doi.org/10.30844/wi_2020_r13-schindelmann



whilst retaining fair cost distribution in marginally slower runtime than the push 

concept. The difference in latency between the evaluated concepts has minor 

significance in a real process since the greatest reason for process latency is waiting 

time [29] which the SS reduces massively. 

6 Conclusion 

We find that collaborative business processes are rarely managed using business 

process management systems because such processes require a lacking trust between 

the participants to mutually design and execute the process. Blockchain-based 

management systems can solve this issue due to the immutable, trustless and 

tamperproof nature of the Blockchain technology. Yet, reaching fair cost distribution 

in such a setting is an unsolved problem. For this reason, we implement a 

Subscription Service for automated communication and fair cost distribution in 

collaboratively executed business processes on the Ethereum Blockchain. The 

Subscription Service subscribes itself to relevant participants of the collaboration and 

reacts upon emitted Ethereum Event logs accordingly. If a trigger event is noticed, the 

Subscription Service executes follow-up actions signing transactions using a provided 

secret key. Consequently, costs may be fairly attributed to the responsible 

participants. Another positive effect is the reduction of organizational waiting time, 

since follow-up actions may be triggered automatically, instead of manually checking 

the executability. In order to evaluate how our service performs in the context of 

automation and fair cost distribution, we compare the prototype to a pushing concept 

where Smart Contracts collaborate through starting transactions on another contract in 

order to express process communication. The results show that the SS enables a fair 

distribution of expenses between the participants of the process while providing the 

potential to reduce a large amount of organizational waiting time in processes. The 

limitations and starting points for further research especially concern the runtime 

environment of the Subscription Service. As of now, the BPMN-XML-Parser is 

limited to simple message events and tasks and does not support more sophisticated 

BPMN diagrams that contain complex gateways with timer events, subprocesses, or 

boundary events for example. Furthermore, our execution engine disregards the 

management of private keys used by the participants to sign transactions. Full BPMN 

support and key management would be valuable next steps to enhance the usability of 

our execution engine.  

References 

1. Breu, R., Dustdar, S., Eder, J., Huemer, C., Kappel, G., Julius, K., Langer, P.: Towards 

Living Inter-Organizational Processes. (2013). https://doi.org/10.1109/CBI.2013.59. 

2. Mendling, J., Dustdar, S., Gal, A., García-Bañuelos, L., Governatori, G., Hull, R., 

Rosa, M. La, Leopold, H., Leymann, F., Recker, J., Reichert, M., Weber, I., Reijers, 

H.A., Rinderle-Ma, S., Solti, A., Rosemann, M., Schulte, S., Singh, M.P., Slaats, T., 

Staples, M., Weber, B., Weidlich, M., Aalst, W. Van Der, Weske, M., Xu, X., Zhu, L., 

https://doi.org/10.30844/wi_2020_r13-schindelmann



Brocke, J. vom, Cabanillas, C., Daniel, F., Debois, S., Ciccio, C. Di, Dumas, M.: 

Blockchains for Business Process Management - Challenges and Opportunities. ACM 

Trans. Manag. Inf. Syst. 9, 1–16 (2018). https://doi.org/10.1145/3183367. 

3. Di Ciccio, C., Cecconi, A., Dumas, M., García-Bañuelos, L., López-Pintado, O., Lu, 

Q., Mendling, J., Ponomarev, A., Binh Tran, A., Weber, I.: Blockchain Support for 

Collaborative Business Processes. Inform. Spektrum. 42, 182–190 (2019). 

https://doi.org/10.1007/s00287-019-01178-x. 

4. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: 

Untrusted Business Process Monitoring and Execution Using Blockchain. In: 

International Conference on Business Process Management (2016). 

https://doi.org/10.1007/978-3-319-45348-4_19. 

5. Ladleif, J., Weske, M., Weber, I.: Modeling and Enforcing Blockchain-Based 

Choreographies. In: International Conference on Business Process Management. pp. 

69–85 (2019). https://doi.org/10.1007/978-3-030-26619-6_7. 

6. Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction Ledger, (2014). 

7. Vaishnavi, V., Kuechler, W., Petter, S.: Design Science Research in Information 

Systems. Advances in Theory and Practice. Springer, Berlin, Heidelberg (2012). 

https://doi.org/10.1007/978-3-642-29863-9. 

8. Nakamoto, S.: Bitcoin : A Peer-to-Peer Electronic Cash System. 

9. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and 

Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University 

Press, Princeton (2016). 

10. Wöhrer, M., Zdun, U.: Smart contracts: security patterns in the ethereum ecosystem 

and solidity. In: 2018 International Workshop on Blockchain Oriented Software 

Engineering (IWBOSE). pp. 2–8. IEEE (2018). 

https://doi.org/10.1109/IWBOSE.2018.8327565. 

11. Mühlberger, R., Bachhofner, S., Di Cicco, C., Garcia-Banuelos, L., Lopez-Pintado, O.: 

Extracting Event Logs for Process Mining from Data Stored on the Blockchain. In: 

International Conference on Business Process Management (Workshop Proceedings) 

(2019). 

12. Weske, M.: Business Process Management. Springer, Berlin, Heidelberg (2012). 

https://doi.org/10.1007/978-3-642-28616-2. 

13. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business 

Process Management. Springer, Berlin, Heidelberg (2018). 

14. López-Pintado, O., García-Bañuelos, L., Dumas, M., Weber, I.: Caterpillar: A 

Blockchain-based Business Process Management System. In: International Conference 

on Business Process Management (Demo Track) (2017). 

15. Prybila, C., Schulte, S., Hochreiner, C., Weber, I.: Runtime verification for business 

processes utilizing the Bitcoin blockchain. Futur. Gener. Comput. Syst. (2017). 

https://doi.org/10.1016/j.future.2017.08.024. 

16. Falazi, G., Hahn, M., Breitenbücher, U., Leymann, F.: Modeling and execution of 

blockchain-aware business processes. Software-Intensive Cyber-Physical Syst. 34, 

105–116 (2019). https://doi.org/10.1007/s00450-019-00399-5. 

17. Tran, A.B., Lu, Q., Weber, I.: Lorikeet : A Model-Driven Engineering Tool for 

Blockchain-Based Business Process Execution and Asset Management. In: 

https://doi.org/10.30844/wi_2020_r13-schindelmann



International Conference on Business Process Management (Workshop Proceedings) 

(2018). 

18. Madsen, M.F., Gaub, M., Høgnason, T., Kirkbro, M.E., Slaats, T., Debois, S.: 

Collaboration among Adversaries : Distributed Workflow Execution on a Blockchain. 
In: Symposium on Foundations and Applications of Blockchain (FAB ‘18) (2018). 

19. Hull, R., Batra, V.S., Chee, Y.-M., Deutsch, A., Heath, F., Vianu, V.: Towards a 

Shared Ledger Business Collaboration Language Based on Data-Aware Processes. In: 

ICSOC 2016. pp. 202–218 (2016). https://doi.org/10.1007/978-3-319-46295-0. 

20. López-Pintado, O., Dumas, M., García-Bañuelos, L., Weber, I.: Dynamic Role 

Binding in Blockchain-Based Collaborative Business Processes. In: International 

Conference on Advanced Information Systems Engineering (2019). 

21. Prybila, C., Schulte, S., Hochreiner, C., Weber, I.: Runtime Verification for Business 

Processes Utilizing the Bitcoin Blockchain Runtime Verification for Business 

Processes Utilizing the Bitcoin Blockchain. (2017). 

https://doi.org/10.1016/j.future.2017.08.024. 

22. García-bañuelos, L., Ponomarev, A., Dumas, M., García-bañuelos, L., Ponomarev, A.: 

Optimized Execution of Business Processes on Blockchain Optimized Execution of 

Business Processes on Blockchain. In: International Conference on Business Process 

Management (2017). https://doi.org/10.1007/978-3-319-65000-5. 

23. López‐Pintado, O., García‐Bañuelos, L., Dumas, M., Weber, I., Ponomarev, A.: 
Caterpillar: A business process execution engine on the Ethereum blockchain. In: 

International Conference on Business Process Management (Workshop Proceedings) 

(2019). https://doi.org/10.1002/spe.2702. 

24. Nakamura, H., Miyamoto, K., Kudo, M.: Inter-organizational Business Processes 

Managed by Blockchain. In: International Conference on Web Information Systems 

Engineering (2018). https://doi.org/10.1007/978-3-030-02922-7_1. 

25. Teutsch, J.: On decentralized oracles for data availability, 

https://people.cs.uchicago.edu/~teutsch/papers/decentralized_oracles.pdf, last accessed 

2019/10/10. 

26. Klinger, P., Bodendorf, F.: Blockchain-based Cross-Organizational Execution 

Framework for Dynamic Integration of Process Collaborations. In: 15th International 

Business Informatics Congress (WI2020) (2020). 

27. Camunda: Transactions in Processes, https://docs.camunda.org/manual/7.8/user-

guide/process-engine/transactions-in-processes/, last accessed 2019/10/13. 

28. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The Many Faces of 

Publish/Subscribe. ACM Comput. Surv. 35, 114–131 (2003). 

https://doi.org/10.1145/857076.857078. 

29. Belkin, V.: Multikriterielles Controlling von Geschäftsprozessen: Prozessverbesserung 

mit Hilfe der dynamischen Simulation. Eul, Lohmar (2011). 

 

https://doi.org/10.30844/wi_2020_r13-schindelmann


	1 Introduction
	2 Background
	2.1 Blockchain and Smart Contracts
	2.2 Business Processes
	2.3 Related Work

	3 Blockchain-based process execution with the Subscription Service
	3.1 Smart Contract architecture for process models
	3.2 Standardized process fragmentation through wait states
	3.3 Storage of process data used by the Subscription Service

	4 Implementation
	4.1 Architectural Overview
	4.2 Core functionality of the Subscription Service

	5 Evaluation and Discussion
	6 Conclusion
	References



