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Abstract. The mobility sector has been established as a prominent example for 
the sharing economy. E-carsharing offers a way to introduce and utilize electric 
vehicles as a sustainable mobility service to solve current and future mobility 
issues. Nonetheless, e-carsharing still faces several challenges that need to be 
overcome in order to act as a mainstream means of commute. 
In this article, we propose user-based relocation to improve the use and 
availability of electric vehicles within e-carsharing. It enables value co-creation 
by actively involving the user in value creation, e.g. increasing the position-
dependent value of a shared vehicle. By simulating an e-carsharing system, we 
were able to analyze the capabilities of user-based relocation. The results 
indicate that user-based relocation has the potential to greatly improve electric 
vehicle use and demonstrates an example of successful value co-creation in the 
sharing economy. Furthermore, it strengthens e-carsharing as a part of everyday 
mobility. 
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1 Introduction 

Enabled by internet and mobile technology, the sharing economy unfolds its potential 
of disrupting industries and markets increasingly [1, 2]. The mobility industry serves 
as an example of an industry ascending from a product- to service-based business 
model. Carsharing serves as a prime example since it demonstrates the benefits of 
collaborative consumption of a resource instead of owning it personally [3, 4]. Within 
the sharing economy, carsharing is a prime example for the access economy, since it 
demonstrates the potential of replacing the underutilized resource of a privately 
owned car with shared vehicles that can be accessed on-demand [5]. While a major 
challenge for businesses of the platform economy is to accomplish the network effect, 
systems that provide access to relocatable goods (e.g., car-, e-scooter-, bike-, 
umbrella-, power-bank-sharing) face the challenge of asynchronous spatial supply and 
demand [6]. In general, costumers use services of the sharing economy to reach their 
goal, which in this context means to find the requested good for utilization nearby [7]. 
Rebalancing the physical goods in the system therefore becomes a success factor of 
creating value with the service and avoids availability uncertainty. 

Against this background, researchers have developed a new concept called user-
based relocation. The idea of user-based relocation is to motivate users to return 
currently rented vehicles at stations with high vehicle-demand [8, 9]. It enables the 
value co-creation by actively involving the user in value creation, e.g. increasing the 
position-dependent value of a shared vehicle. Thus, value is co-created [10, 11]: The 
carsharing provider generates value by offering to rent from a distributed fleet of 
vehicles, and customers can increase value through relocations. 

Despite the cost advantage of user-based relocation, this strategy is yet to be 
adapted for e-carsharing. The majority of existing research on vehicle relocation takes 
place predominantly in conventional carsharing and operator-based relocation 
strategies [12]. 

Carsharing services with electric vehicle (EV) fleets offer a high potential of 
reducing CO2 emissions and air pollution [13], but also add a new dimension to the 
vehicle relocation problem. EVs are dependent on a sufficient charging management 
and infrastructure to avoid range anxiety and other negative experiences for customers 
[13, 14]. In this light, current charging status and availability of charging 
infrastructure must be considered to improve effectiveness of EV relocation.  

Thus, we strive to facilitate a decrease in costs through the application of user-
based relocation and to subsequently increase the flexibility of e-carsharing by 
answering the following research question:  

RQ: How can user-based relocation be adapted to the context of e-carsharing? 

2 Research Background 

In the context of carsharing, the term “relocation” describes the process of altering 
vehicle distribution to counter the discrepancy of vehicle demand and supply within a 
carsharing system [15]. Vehicle relocation is an important part of carsharing, as it 
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ensures the provision of a satisfactory service quality to its customers through 
continuous vehicle availability sufficient to meet demand [16]. There are currently 
two types of relocation approaches [15]: (1) Operator-based relocation: In operator-
based relocation, staff members rearrange the vehicles by driving, towing or ride-
sharing them to the desired location [17]. (2) User-based relocation: The idea of 
user-based relocation is to motivate users to return the vehicle at a different station as 
opposed to their initial destination during the rental [9]. 

To evaluate the current status quo of relocation research regarding e-carsharing, we 
analyzed literature review studies on this topic. Based on the literature reviews [12, 
18–20], we analyzed the vehicle type fleet composition (electric vehicles (EV), 
internal combustion vehicle (ICV) or mixed), relocation method (user-based or 
operator-based), and carsharing form (free-floating or station-based). 

The review provides evidence that station-based one-way carsharing and operator-
based relocation are more predominant research topics. Free-floating carsharing, user-
based relocation, and especially e-carsharing are newer concepts and are currently 
underrepresented in vehicle relocation research. Despite the potential of user-based 
relocation in e-carsharing, most of relocation literature focuses on operator-based ICV 
relocation, and to date, there is only limited research regarding the adaptation of user-
based relocation in e-carsharing. 

3 Research Approach 

The development of novel solutions for relevant problems falls under the Design 
Science Research (DSR) paradigm. Hence, adopting a DSR approach fits the research 
objective of developing and evaluating a user-based relocation procedure for e-
carsharing. Thus, our research adopts a research process from [21, 22] as depicted in 
Figure 1. We completed all three cycles (relevance, rigor, and design) of DSR in an 
iterative fashion [22].  

 

Figure 1. Applied Design Science Research Process 

The relevance cycle inherits the interconnection of design activities and its 
application environment and practice, enabling an assimilation of real-world 
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requirements. Furthermore, it enables the introduction of newly designed artifacts to 
the field. The rigor cycle connects design activities with the knowledge base to 
integrate and extend theories and knowledge. The core of the DSR model is the 
design cycle, which includes the iterative construction and evaluation of the artifacts 
[22]. 

We adapted user-based relocation for e-carsharing in one and a half iterations. The 
first iteration consisted of a relevance, rigor, and design cycle. The artifact resulting 
from the design cycle was informed by the environment in the relevance cycle and by 
the knowledge base during the rigor cycle. The second iteration consisted of a 
relevance cycle and a rigor cycle. The subsequent artifact was applied within its 
intended field as a simulation and was evaluated based on its performance in the 
relevance cycle. Lastly, we reflect on the artifact and related development process, 
synthesizing the gathered knowledge as a design theory [23] and present our research 
in this article in the final rigor cycle.  

3.1 Iteration 1: Problem Definition and Artifact Design 

The first iteration started with a relevance cycle, revealing a lack of user-based 
relocation methods for e-carsharing (see Related Work section). We discussed this 
result with a local e-carsharing provider who confirmed our findings that e-carsharing 
is in need of specialized relocation methods. Thus, our relevance cycle resulted in the 
identification of a practical problem: there are currently no concepts for user-based 
relocation in e-carsharing. 

Subsequently, we began our research process by identifying the aim of relocation 
method development for implementation within an IS to increase availability of EVs 
within e-carsharing systems (either with a pure EV fleet or with a mixed vehicle 
fleet). Based on the literature review (see Related Work section) and an interview 
with a local e-carsharing provider, we gathered four essential requirements: R1 – 

Charge Management: EVs must be relocated in a way that ensures enough charge 
for future rentals, R2 – EV Utilization: EV relocations should lead to increased use, 
measured by number of rentals and/or kilometers driven, R3 – Cost Efficiency: The 
number of relocations should be minimized to ensure cost-efficiency, and R4 – 

Overall Performance: The EV relocations must not reduce overall system 
performance, measured by total number of accepted rentals. 

As a second step, we performed a rigor cycle drawing from the existing vehicle 
relocation literature to select an appropriate starting point for the design process. We 
identified the user-based relocation information system framework and algorithms/ 
heuristics of [24] as a promising input source for our design activities. 

In the following design cycle, we iteratively adapted the concept of user-based 
relocation to meet the predefined requirements. Furthermore, we adapted and 
developed heuristic algorithms for the individual functions of each component. The 
algorithms developed serve as a valuable tool for optimization [25] and help to gain 
an initial understanding of a complex problem, thereby guiding development of future 
solutions. 
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3.2 Iteration 2: Evaluation and Publication 

In DSR, it is important to evaluate artifacts as closely as possible to their real-world 
environment and intended field of application [21, 26]. Therefore, we developed a 
discrete-event simulation of an e-carsharing system as part of the relevance cycle. 
Simulations are commonly used in the general context of vehicle relocation research 
[27], while discrete event simulations are particularly common for carsharing 
simulations because they are able to identify system behavior changes when a set of 
different constraints is implemented. Furthermore, a carsharing system’s state changes 
only through events such as rental requests, supply imbalances, relocations, and 
returns, which can be described through discrete-event simulation [28]. The 
developed simulation consists of individual users, vehicles, and stations. Rentals are 
implemented as an event queue. We built the simulation system based on the 
carsharing system from which we gathered the rental data as input. The simulation 
revealed novel design principles for user-based relocation in e-carsharing, which 
concluded the research design process. 

Lastly, we performed a final rigor cycle to add the artifact, its development 
process, and its design implications to the existing body of knowledge. We contribute 
to the knowledge base with a summary of our research and reflections on the results 
in the form of this article. 

4 Adaptation of User-Based Relocation for E-Carsharing 

We base our adaptation of user-based relocation in e-carsharing on the “User-based 
Relocation Information System Framework” [8], which consists of a prediction, 
relocation, and customer interaction modules. The prediction module estimates future 
vehicle demand of each station by analyzing previous rental data. Each station has an 
individual threshold of vehicles to satisfy future demand. If current vehicle supply at a 
station is below its threshold, vehicles must be relocated to this station. The relocation 
module identifies users driving towards under-supplied stations within their vicinity. 
To motivate user-based relocation, the customer is prompted with an incentive 
accompanying the relocation request via the customer interaction module. 

E-carsharing fleets can consist of a mix of ICVs and EVs, referred to as mixed 
fleets, or exclusively consist of EVs, referred to as pure EV fleets. In this study, user-
based relocation is evaluated for both types of fleets. Furthermore, we argue that the 
prioritization of EVs (R2) and the allocation of available charging points (R1) is 
important. Therefore, we developed two adaptation versions of the underlying 
algorithm to test each approach: 

(1) Prioritizing EVs for relocation: For mixed fleets, we propose prioritizing EVs 
before ICVs in the relocation module. This means that users driving an EV will 
receive relocation requests before users, driving an ICV. Hence, EVs will be 
prioritized and relocated to stations with a demand for vehicles leading to a higher 
utilization of EVs within a mixed vehicle fleet. 

(2) Relocating EVs to stations with a free charging point: In a pure EV fleet, 
EVs cannot be prioritized for rental. Therefore, we developed a second adaptation 
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which not only relocates EVs to stations in demand of vehicles, but also relocates EVs 
to stations with free charging points in case the charging point at the initial destination 
is occupied at the time of arrival. This should lead to increased pure EV fleet 
utilization through charging infrastructure and EV availability optimization. Hence, 
this approach seems promising for both types of vehicle fleets. 

4.1 Data Set 

A rental data record can include different variables, such as customer ID, start time, 
end time, origin station, destination station, etc. [9]. For an e-carsharing relocation 
simulation, rental r can be described with the following tuple [29]: 

r = (origin, destination, τs, τt, distance, power consumption) (1) 

where origin describes the rental starting point, destination defines the station where 
the rental will end, τ𝑠 represents the start time, τ𝑡 is the travel time of the rental, 
distance measures the kilometers driven during the rental, and power consumption 
signifies the electric energy needed. 

In this context, real-world data can be insufficient when it is collected from a real-
world carsharing system as the data is incomplete and biased by the implemented 
relocation method. To account for such biases, we generated a data set following an 
established data generation approach [28]. The approach generates artificial rental 
data by training machine learning algorithms to learn the patterns within real-world 
data.  

To generate our data set, we used two different car-sharing data sets: one from a 
conventional carsharing system and one from a smaller e-carsharing system. For 
origin, destination,τs, τt,  we used a data set consisting of 2,062 rentals gathered over 
the course of 3 months from the conventional carsharing system, on which we 
modeled our simulation. The system offers vehicles from a fleet of 50, excluding 
transporters and other special vehicles, and contains 10 stations that are strategically 
distributed within a German city of around 100,000 inhabitants. For measuring 
distance and power consumption, we used an additional data set containing 2,849 
rentals gathered over the course of 437 days supplied by a German provider with a 
station-based one-way e-carsharing system. The e-carsharing fleet consisted of eight 
VW e-ups with three stations and two charging points per station.  

We generated simulated data following the approach of [29] based on the 
following equation: 

P(τs ∩ τt ∩ origin ∩ destination) =  

P(τs ∩ τt)∙P(origin | τs∩τt)∙P(destination |τs ∩ τt ∩ origin) ∗  P(distance, power consumption | τs ∩ τt ∩ origin ∩ destination)  (2) 

A Gaussian Mixture Model was used to generate the time tuple (τ𝑠, τ𝑡), a decision 
tree for 𝑜𝑟𝑖𝑔𝑖𝑛, and one for the 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛. We also used a Gaussian Mixture 
Model to add distance (based on the km per min.) and power consumption (based on 
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the Difference of “State of Charge” (SoC) per km) to each rental [29]. We used the 
scikit-learn Python library for the implementation and grid search to obtain the 
configurations of each algorithm [30]. 

Consequently, we generated two data sets for the simulation: One representing a 
normal demand situation and the other representing a higher demand situation. To 
define a normal demand situation, we analyzed our first data set (normal carsharing) 
containing 2,062 rentals carried out over the course of three months. Thus, the 
resulting generated data sets consisted of 2,000 rentals (normal demand situation) and 
4,000 rentals (high demand situation) within a three-month timeframe, allowing 
analysis of adapted user-based relocation approaches under the two different 
circumstances. 

4.2 Simulation 

The functions, parameters, and assumptions of the simulation are described in the 
following section. It is important to note that EVs are prioritized before ICVs to be 
rented out to customers. If multiple EVs are available and not currently charging, the 
EV with the highest SoC is selected for rental. 

Relocation Method 

Following the common threshold approach, each station requires a threshold 
representing the minimum number of vehicles needed, which is defined as follows 
[24]: 

Tτ
S = 

BS ∗  nvτ1,τ2

K ∗ B
 

(
3) 𝑇𝜏𝑆 = Minimum threshold for station S at time point τ 𝐵𝑆= Number of rentals at station 𝑆. 𝐵 = Total number of rentals 𝑛𝑣𝜏1,𝜏2  = Number of vehicles available in the time frame 𝜏1, 𝜏2 𝜏1 = Start of time frame; 𝜏2 = End of time frame 𝐾 = Risk of rejection 

When the threshold is breached, relocations are needed. Threshold breaches are 
defined by the following equation: 

Tτ
S > ciS + ctS 

(
4) 𝑇𝜏𝑆 = Threshold of a station 𝑆 at the time point 𝜏.  𝑐𝑖𝑆 = Number of vehicles at station 𝑆 𝑐𝑡𝑆 = Number of vehicles driving to station 𝑆 

 
The number of relocations needed to balance station supply and demand is 

calculated as follows: 
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RS = Tτ
S − (ciS + ctS) 

(

5) 𝑅𝑆 = Number of relocations needed at station 𝑆 
Customers will be asked to return their vehicles to a station with a breached 

threshold (referred to as a critical station) instead of the intended destination. 
Customers are selected for relocation as follows: (1) Select rentals with a destination 
near the critical station, (2) filter out any rentals with a critical destination or those 
already requested for relocation, and (3) sort filtered rentals by arrival time, 
prioritizing soon ending rentals. 

Following this order, customers will be requested until a certain number of 
relocation requests 𝑅𝑆 are accepted or until no suitable customers are left, at which 
point the process is to be repeated later. We limited relocation requests to only prompt 
users with a rental ending in the next 15 minutes to avoid long-term distance 
relocations.  

To adapt user-based relocation in e-carsharing, we propose the prioritization of 
EVs over ICVs for relocation. This might also have a positive influence on user 
acceptance since costumers prefer to experience an EV over an ICV [31]. The 
customer selection process described above is altered in step 3. Before filtering rentals 
by arrival time, rentals are divided into two groups: EV rentals and ICV rentals. Each 
group is then sorted by arrival time, and customers of EVs receive a relocation request 
first. Only when the option of requesting EV customers for relocation is exhausted, 
ICV customers are requested to relocate. 

As a further step to adapting user-based relocation in e-carsharing, in cases where 
the charging point at the initial destination is occupied at the time of arrival, we also 
propose the relocation of EVs to stations with a free charging point. For each arriving 
EV, the availability of a charging point is checked 15 minutes before arrival. If no 
charging point is available, the stations within the vicinity of the destination will be 
checked for free charging points, and the EV customer receives a relocation request if 
a nearby charging point is available. 

To model user behavior with regard to acceptance or rejection of relocation 
requests, relocation acceptance rates (RAR) serve as appropriate measures for 
carsharing simulation studies [24]. The RAR has a big impact on system performance 
and a RAR of fewer than 100 can lead to inconsistent results in the same setting [8]. 
Hence, we will use a fixed RAR of 100 for the entire course of the simulation to 
ensure consistent results and simulate an optimized user-based relocation system 
capable of successfully motivating user relocation behavior. 

Vehicles and Fleet Size 

The composition of a carsharing fleet has a significant influence on system 
performance and efficiency [32]. Therefore, fleet size must be determined prior to the 
estimation of other parameters like relocation thresholds. 

The reference carsharing system had a fleet of 50 vehicles. However, pre-tests have 
shown that 50 vehicles are too many and a vehicle fleet with 40 vehicles can provide 
a similar service level for 2,000 rentals (normal demand situation). Furthermore, a 
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smaller fleet leads to a system which is more sensitive to relocations, which is 
necessary to observe reactions to relocation process changes according to pre-test 
results. Larger fleets are less dependent on relocation, hiding the impact of relocation 
strategy variations. Based on these findings, we tested different fleet sizes with un-
adapted user-based relocation and determined a vehicle fleet size of 24 for our 
simulation test case. A 24-vehicle fleet still has an 85% success rate (4.5% less than a 
fleet of 50 vehicles), despite being less than half the size of the referenced vehicle 
fleet. Therefore, a fleet of 24 vehicles is capable of providing a sufficient and 
relocation-sensitive carsharing system for our test-case and is used for the simulation. 
To evaluate the capability of the relocation approaches, we used two kinds of fleets: a 
mixed vehicle fleet and a pure EV fleet. The mixed vehicle fleet includes 14 ICVs and 
10 EVs with one EV for each charging point (see next section). We describe the fleet 
as relatively homogeneous, as each vehicle has no further distinguishable 
characteristics such as speed or vehicle size, besides motor type.  

Stations and Charging Infrastructure 

The simulation included 10 stations with the same geographical distribution as in the 
referenced German carsharing system. Each station has one single charging point 
(charging 33.3 SoC per hour) allowing EV returns at any station and avoiding 
“stranding” of under-charged vehicles at stations without charging points. 

Charging Strategy 

Charging EVs is an essential part of e-carsharing and therefore requires simulation 
within its logistic limitations. E-carsharing providers can either always charge their 
vehicles or use some kind of charging management service [28]. Continuous charging 
is the strategy used by the referenced e-carsharing system and is therefore 
implemented in the simulation. Furthermore, EVs meant to be charged at an occupied 
charging point will start charging as soon as the slot is free. It is assumed that an 
operator will plug the EVs in. 

Risk Factor and Thresholds 

Risk factor (K) for rental rejection represents the risk of insufficient vehicle supply of 
a carsharing provider and is an important component of station threshold 
computation. A high risk factor leads to lower thresholds and therefore to a higher 
risk of insufficient supply and rental request rejection. A low risk factor leads to a 
higher threshold and better vehicle distribution but also to more relocations, leading to 
higher costs. Therefore, the risk factor must be determined in order to consider the 
number of accepted rentals and the number of relocations [24].  

To set sufficient thresholds, different values for the risk factor (K) must be tested. 
We compared risk factor values for both demand level datasets including 2,000 and 
4,000 rentals, a mixed vehicle fleet (24 vehicles), and continuous charging. To 
evaluate the best K value, we use the success rate (percentage of accepted rentals) and 
the effectiveness of relocation (E) [24]. The results showed K=1.5 as the most 
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effective and efficient risk factor value in both demand cases and was therefore 
selected. 

4.3 Results and Findings 

To evaluate the capabilities of the adapted user-based relocation approaches, four 
scenarios were defined: (1) No relocation, (2) un-adapted user-based relocation, (3) 
user-based relocation prioritizing EVs, and (4) user-based relocation prioritizing EVs 
and free charging points. 

Table 1. Scenario #1 (No relocations) and Scenario #2 (Un-adapted user-based relocation) 

 
 
Each scenario contains four cases. This is due to the two by two factor design of 

our research approach (composition: mixed or pure EV, demand: normal or high). 
Scenario 3 contains only two cases because EVs cannot be prioritized within a pure 
EV fleet. The scenarios and cases were chosen to simulate different stages of user-
based relocation adaptation within e-carsharing for comparison.  

To evaluate requirement fulfilment in each case, the following measurements were 
defined: (1) Success rate: Percentage of accepted rental requests, (2) Relocations: 
All completed relocations, (3) Successful rentals (total): Number of successful 
rentals of any vehicle type, (4) Successful rentals (EV): Number of successful EV 
rentals, (5) Rental errors: Number of reassigned ICV rentals due to insufficient EV 
charge, (6) Average number of charging cycles: Mean of total rental amount per 

Scenario 

Fleet

Number of rentals 2,000 4,000 2,000 4,000 2,000 4,000 2,000 4,000

Case number 1 2 3 4 5 6 7 8

Success rate 66.97 64.75 65.32 60.55 85.03 80.46 81.84 78.97

Relocations (all) 678 1234 620 1,221

Successful rentals (total) 1,342 2,595 1,704 3,225

Successful rentals (EV) 864 1,589 1,002 1,913

Rental errors 90 139 128 216 98 166 155 279

Rentals per charging cycle 1 1 1 1 1 1 1 125

Avg number of charging cycles 86.4 158.9 54.54 101.13 100.2 191.3 164 316.5

Avg total charging time 56.98 105.1 37.33 68.07 64.91 121.3 42.84 73.35

Avg total rental time (EV) 120.9 225.5 105.8 199.41 136.5 267.5 131 269.3

Avg total rental time (ICV) 107.8 223.1 157.5 278.3

Avg idle time (EV) 34.7 18.08 44.68 18.97 21.89 13.97 30.05 19.06

Avg idle time (ICV) 32.73 22.45 26.25 21.14

Operator plug-ins 1 2 3 12 1 2 3 15

-

- -

-

3,1651,640

EV

-

Mixed EV

2,4271,309

#1 #2

Mixed

-
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charging cycle, (7) Average total charging time
1
: Total charging time of all EVs (in 

hours), (8) Average total rental time: Mean hours of all rental per vehicle, (9) 
Average idle time: Mean hours of idle time between rentals per vehicle, and (10) 
Operator plugins: Number of EV charges per operator. 

The results of the simulations are shown in Table 1 and Table 2. 

Table 2. Scenario #3 (User-based relocation – prioritizing EVs for relocation) and  
Scenario #4 (User-based relocation – prioritizing EVs and relocation to free charging points) 

 
 

A comparison of scenario 1 and scenario 2 reveals that user-based relocation 
increases success rate by 15.7% up to 18.4%, requiring between 620 and 1,234 
relocations. The other parameters increase according to the number of accepted 
rentals. For scenario 2, the duplication of rentals leads to a 5% decrease in success 
rate for mixed fleets. Nearly all other parameters (relocations, successful rentals, 
average number of charging cycles, average total charging time, deep discharges and 
average total rental time) are doubled, while the idle time is halved. For pure EV 
fleets, the success rate is lower than that of a mixed vehicle fleet’s due to rental 
distance limitation of SoC, leading to a much higher number of rental errors in cases 7 
and 8 in comparison to cases 5 and 6.  

Relocating EVs to free charging points results in an increased success rate in 
comparison to all previous cases. The success rate drops when the number of rentals 
is doubled by ~2%, in comparison to cases 11 and 12, while the success rate stays the 
same for cases 13 and 14 with a pure EV fleet. Additionally, EV rental time and 

                                                           
1 All time values are in hours. Total values are aggregated for the simulated timeframe of 3 
months. 

Scenario

Fleet

Number of rentals 2,000 4,000 2,000 4,000 2,000 4,000

Case number 9 10 11 12 13 14

Success rate 85.03 80.16 86.16 83.88 80.99 80.99

Relocations (all) 677 1,235 854 1,690 789 1,793

Relocations for charging points 558 1,063 657 1,423

Successful rentals (total) 1,704 3,213 1,727 3,362

Successful rentals (EV) 1,029 1,916 1,127 2,057

Rental errors 102 165 117 176 154 280

Rentals per charging cycle 1 1 1 1 1 1

Avg number of charging cycles 102.9 191.6 112.7 205.7 67.63 135.25

Avg total charging time 66.77 125.83 73.93 138 45.1 85.59

Avg total rental time (EV) 141.1 267.37 157.27 290.01 137.54 263.08

Avg total rental time (ICV) 153.77 275.95 141.67 286.66

Avg idle time (EV) 24.67 15.72 11.08 12.47 50.11 14.86

Avg idle time (ICV) 19.42 21.04 27.57 22.55

Operator plug-ins 1 2 2 2 2 4

-

-

Mixed EVMixed

-

#4

1,623 3,246

#3
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successful EV rentals are increased significantly by around 10%. The other 
parameters react similarly when the number of rentals is doubled as in the other cases. 

Thus, for mixed vehicle fleets, adapting user-based relocation has little to no effect 
on EV use for adaption approach 1 (scenario 3), while adaption approach 2 not only 
increases EV rentals by around 10% (R1 and R2) but also increases the overall 
success rate by 1% to 3% for a mixed vehicle fleet (R4). Furthermore, the number of 
relocations is only increased by around 25% (R3). Thus, in contrast to intuitive 
approaches concentrating EVs at stations with a high vehicle demand, results show 
that the most effective strategy for optimizing EV utilization is to spread EVs over 
multiple stations. This implies that strategies strictly prioritizing EVs for relocation 
should be avoided in favor of also prioritizing relocations for open charging points. 

For a pure EV fleet using un-adapted user-based relocation, the number of 
accepted rentals increases significantly to a rate of 18.4% (R1, R2 and R4). Fully 
adapted user-based relocation strategies (scenario 4) increase the success rate for 
4,000 rentals by around 2% while reducing the success rate for 2,000 rentals by over 
1% (R4). Additionally, when evaluating rental increases in the context of the number 
of additional relocations, the conclusion is that un-adapted user-based relocation is the 
optimal strategy (R3). In summary, adapting user-based relocation by prioritizing EVs 
and relocations to free charging points is a promising approach for mitigating the 
vehicle relocation problem within the context of mixed vehicles fleets, while un-
adapted user-based relocation strategies are most effective for pure EV fleets.  

5 Discussion and Conclusion 

The research project presented in this article aims to develop a user-based relocation 
approach tailored for the needs of e-carsharing. In the following section, we discuss 
the implications of the developed artifacts followed by limitations and future 
opportunities for the presented research.  

5.1 Implications  

DSR adds to theories by developing new design theories, in other words, by 
explaining how to do something. Correspondingly, we summarize our findings as a 
design theory [23] for vehicle relocation IS in e-carsharing. The resulting design 
theory insights are summarized in Table 3. Adapting user-based relocation by 
prioritizing EVs and relocations to free charging points shows an improvement of the 
system performance within the context of mixed vehicles fleets, while un-adapted 
user-based relocation strategies are most effective for pure EV fleets. Increasing the 
number of EV-rentals might also have a multiplicator effect, since carsharing users 
perceive EVs as more attractive than ICVs [31]. Furthermore, the framework is 
scalable to free-floating carsharing systems and more sophisticated demand-
modelling approaches.  

While the outcomes provide solutions for the known problem of vehicle relocation 
(improvement), this research also extends user-based relocation to the novel problem 
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of EV relocation (exaptation). In addition to the theoretical contributions, the 
developed relocation algorithm also contributes to practice. The goal of design 
science research is to achieve practical relevance by solving prevailing problems of 
practitioners [21]. This study provides guidance on how to solve the relocation 
problems of e-carsharing, thereby providing valuable guidance for carsharing 
providers in the development of contextualized IS for EV relocation and rethinking 
currently employed relocation strategies. The suggested design includes the customer 
in the value creation process, which furthermore repositions a carsharing service from 
an access economy to a community-based access economy. This has the potential to 
prevent the risk of moral hazard, since value co-creators might be more interested in 
preserving the well-being of the community [5]. 

Table 3. Design Theory of Vehicle Relocation IS in E-Carsharing 

Component Description 

Purpose and 

Scope 

Goal: Increasing the availability of EVs within an e-carsharing 

system. 

Requirements: Charge Management (R1), EV Utilization (R2), 

Cost Efficiency (R3), Overall Performance (R4) 

Constructs 
Rental, Customer, Vehicle, ICV, EV, SoC, Charging point, 

Station, Relocation 

Principle of 

Form and 

Function 

Relocation procedures for pure EV fleets should not consider 

relocating to available charging points. 

Relocation procedures for mixed vehicle fleets should prioritize 

EVs for relocation and also should relocate EVs to available 

charging points. 

Artifact 

Mutability 

Adaptable for free-floating e-carsharing 

The modular architecture enables adoption of individual parts 

and algorithms 

Testable 

Propositions 

Employing the vehicle relocation procedure increases the 

number of EV rentals.  

Justificatory 

Knowledge 
Carsharing Literature 

 

5.2 Limitations and Opportunities 

Our research is subject to some inherent limitations which present opportunities to 
address such challenges through future research.  

Firstly, we tested the proposed relocation methods on simulations generated from 
only one medium-sized carsharing system and related data set, thereby limiting the 
generalizability of our findings. The next step should be to implement user-based 
relocation in the context of e-carsharing, following the presented design theory.  

Secondly, in the simulation, some assumptions and generalizations are employed. 
For instance, it is assumed that every rental could be carried out with an EV and that 
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users accept relocation requests. Hence, the fact that some users are unwilling to rent 
EVs or need specific vehicle characteristics, e.g. transporter or station wagons, is not 
taken into account. Moreover, users might not drop-off a car at inconvenient 
positions. In practice, requests that are tailored to individual customer demand might 
be helpful to achieve high user-acceptance rates. This includes to not only formulate 
requests for drop-off locations but also to incentivize pick up locations. Hence, future 
research should engage with the question of how these factors influence the efficiency 
of vehicle relocation. Furthermore, developing and benchmarking more sophisticated 
algorithms should be considered in future research. 
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