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Abstract. Emissions of greenhouse gases (GHG) have to be reduced to limit the 
impacts of climate change. For that reason, the introduction of carbon taxes has 
been discussed or performed in many countries. Data centers are accounting for 
an increasing fraction of GHG emissions, so that carbon taxation may lead to 
reduced emissions. In this paper, the effect of different carbon tax levels is 
analyzed in experiments based on real-world workload from 20 data centers 
hosting enterprise systems. From the results, it can be concluded that 
optimization potential can be addressed with server consolidation, limiting the 
additional costs to be expected. Additionally, the used power mix and the 
depreciation period have a strong influence on the additional cost as well as the 
optimization potential regarding emissions. 

Keywords: Carbon tax, Data center management, Server consolidation, 
Greenhouse gas emissions  

1 Introduction 

Climate change is undoubtedly the greatest challenge of our time. Severe effects on 
ecology and economy are to be expected due to, for example, rising sea levels or 
extreme weather conditions [1]. As of today, the Paris Agreement of the United 
Nations Framework Convention on Climate Change, which aims at limiting the 
increase in average global temperature to 1.5 Kelvin [2], has been ratified by 187 
nations1. However, the average global temperature in the last 30 years has already 
increased by 1.0 Kelvin in comparison with pre-industrial levels. Thus, anthropogenic 
greenhouse gas (GHG) emissions, measured in carbon dioxide equivalent (CO2eq), 
have to be reduced to zero until 2050 to achieve this goal very likely [1]. The federal 
government of Germany, for instance, wants to reduce GHG emissions as early as 
possible by more than 13 percent on the way to achieve GHG neutrality in 2050 [3]. 

The major problem when reducing GHG emissions in a capitalist system is that the 
price of any product does not really contain its environmental cost, e.g. due to 
subsidiaries or outsourcing [4, 5]. While regulations could be one way to reduce GHG 

1 https://treaties.un.org/Pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-7-
d&chapter=27&clang=_en 
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emissions, experts argue to utilize economic mechanisms such as trading systems or 
carbon taxes [1, 6]. In that context, the European Emission Trading System (ETS) has 
been established in 2005 to reduce GHG emissions [7]. However, the ETS has been 
criticized, e.g. for free certificates, missing trader frauds, or price volatility [7, 8] and 
the amount of GHG emissions in the EU-28 remained constant in the last years (and is 
still increasing worldwide) [9]. For that reasons, carbon taxes are nowadays regarded 
as an effective, additional instrument to reduce emissions [8, 10, 11] and have been 
implemented by 46 countries in 2019 ranging from 0.10 € to 120 € per ton CO2eq 
[11]. In other countries, such as Germany or China, a carbon tax is currently being 
discussed. 

One of the industrial sector with the highest increase in GHG emissions is the ICT 
sector [12]. The crypto currency boom alone increased the energy consumption of 
data centers by more than 43 TWh per year [13]. Also the enterprise system sector, as 
the IT sector with highest growth rates [14], can contribute effectively to the 
reduction of GHG emissions.  

In the context of server consolidation, the costs of a data center are optimized by 
co-allocating orthogonal workload patterns to minimize the number of required 
computing resources [15, 16]. Live migration introduces even more flexibility in 
server consolidation [15], but cannot always be applied, especially for enterprise 
systems [17].  

Since servers can differ strongly in their emissions and power consumption 
behavior [18] a carbon tax will likely affect these efforts. As a result, low-emissive 
allocations should be preferred. Therefore, this paper aims at answering the following 
research question: which effects are different carbon tax levels inducing to the costs 

and emissions of data centers that apply server consolidation? For that reason, 
computational experiments are performed in which server consolidation problems are 
solved based on real-world workload from 20 data centers hosting enterprise systems. 
In these experiments, five tax levels are considered (0-180 € per ton CO2eq) as well 
as two power sources (fossil and renewable) and two depreciation periods (3 and 5 
years). 

2 Related Work 

Although the effect of carbon taxation to data centers using server consolidation has 
not been analyzed before, there are several studies available on a macroeconomic 
level. These works often use simulation to determine the effects of a carbon tax which 
is parameterized with empirical data, e.g. [19–22]. Since carbon taxes are 
implemented in more and more countries, also pure empirical analyses are available, 
both on the macro- and microeconomic level, e.g. [23, 24]. For predicting 
microeconomic effects, however, domain-specific models as in [25] have to be used. 
Therefore, the server consolidation problem itself must be subject to investigations 
about carbon taxes, as these may affect the objective function directly. 

Although most server consolidation approaches derive from the bin packing 
optimization problem [26], these can differ in their results due to their objective 
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function. While traditional approaches for server consolidation focused on the 
minimization of cost [27], the majority of recent approaches minimizes the energy 
consumption of the data center [15].  

Although consumed energy is an important cost factor for data centers [28], the 
emissions accounted for the energy source are not the only source of emissions in its 
lifecycle [29]. Next to data center construction, this refers mainly to emissions caused 
by manufacturing, packaging, transportation, storage, and disposal of used IT 
components [30, 31]. While some server manufacturers have published lifecycle 
emission analyses, these are not completely reliable due to variance in usage profile 
[32]. Furthermore, the increasing energy efficiency of servers [30] leads to the fact 
that the fraction of emissions caused by usage is decreasing. Therefore, optimization 
efforts targeting at the minimization of costs in the presence of a carbon tax cannot 
rely solely on the minimization of energy consumption. Instead, these should be 
integrated into cost minimization approaches that are also considering the acquisition 
of IT components.  

3 Experimental Design 

The server consolidation problems which are to be solved in the experiments are 
derived from Speitkamp and Bichler [16]. This problem formulation is suitable for 
enterprise systems that are not hardware-virtualized to avoid performance drawbacks 
of the virtualization layer [33]. Seasonal workload patterns of services can be utilized 
to consolidate servers to minimize total cost without performance degradations, which 
should be avoided especially in a business context [34]. Workload profiles 𝑊 =(𝑤1, … ) for 20 real-world cases hosting business applications have been provided by 
an industry partner.  

However, in order to illustrate the effects of a carbon tax to these cases, the 
following assumptions are made. First, since power usage profiles in combination 
with carbon footprint data are only available for a few server types, only these have 
been used in the experiments. Second, it is assumed that a carbon tax is implemented 
independently of a trading mechanism and is completely passed through by power 
suppliers and server manufacturers. Third, costs and emissions accounting for data 
center construction are not considered as these are hard to estimate. Finally, it is 
assumed that all parameters stay constant for the whole depreciation period, so that 
neither workloads, power mix parameters nor the allocation change. 

The required parameters and functions to define the server consolidation problem 
are presented in Table 1 as well as in the following.  

The optimization problem is solved in different scenarios, depending on the tax 
level 𝑡𝑎𝑥, the depreciation period 𝑦 as well as the used power mix described by (𝑝, 𝑒). Here, 𝑝 is the price per kWh in € and 𝑒 denotes the emissions per kWh in 
kgCO2eq. The workload for a service 𝑤𝑖 = ((𝑐1, 𝑚1) … (𝑐24, 𝑚24)) is characterized 
by its computing and memory demand over 24 hours of the day, forming a seasonal 
workload profile. Computing demands and capacities are given in the SAP 

https://doi.org/10.30844/wi_2020_m2-bosse



 

 

Application Performance Standard (SAPS) which is an application-dependent, but 
hardware-independent measure for computing resources [35].   

 

Table 1. Used symbols and description 

Symbol Description 𝑊 The set of workload profiles 𝑐𝑡𝑤 Computing demand in SAPS of workload 𝑤 at hour 𝑡, 1 ≤ 𝑡 ≤ 24 𝑚𝑡𝑤 Memory demand in MB of workload 𝑤 at hour 𝑡, 1 ≤ 𝑡 ≤ 24  𝑦 Length of depreciation period in years 𝑝 Price for energy per kWh in € 𝑒 Emissions for energy per kWh in kgCO2eq 𝑎 An allocation of workloads to servers 𝑡𝑎𝑥 Carbon tax level in €/tCO2eq 𝑃𝑈𝐸 Power-usage-effectiveness factor 𝑆 The set of servers to which workloads are allocated 𝑇𝐶𝑌(𝑎) Total costs per year for an allocation 𝑎𝑐𝐶𝑜𝑠𝑡(𝑎) Acquisition costs for an allocation 𝑎𝑐𝐶𝑂2(𝑎) Non-usage emissions for an allocation 𝑜𝑝𝐶𝑜𝑠𝑡(𝑎) Operational costs for an allocation 𝑜𝑝𝐶𝑂2(𝑎) Usage emissions for an allocation 𝐸𝑦(𝑎) Energy consumption of an allocation for a period 𝑦 𝑢𝑡𝑖𝑙(𝑠, 𝑎, 𝑡) Utilization of a server 𝑠 at hour 𝑡 for an allocation 𝑝𝑜𝑤𝑒𝑟𝑠(𝑢) Power consumption of a server 𝑠 at utilization level 𝑢 𝑐𝑎𝑝𝑠 Computing capacity of server 𝑠 in SAPS 
 
Services should then be allocated to servers so that their workload over the day must 
not exceed server capacity. The available servers are created using five server types 
which are presented in Table 2 and in Figure 1. In the latter, the power consumption 
functions 𝑝𝑜𝑤𝑒𝑟𝑠 are compared depending on the computing load level. It can be 
stated that the server types differ significantly in their power consumption behavior as 
well as in their price and non-usage emissions (w.r.t. resource capacity). Thus, type A 
and B represent expensive, but energy-efficient server types while types C, D, and E 
represent cheap alternatives with a more inefficient energy consumption. 

Table 2. Server types used in the experiments 

Label Introduction 

year 

Price in € Non-usage 

emissions in 

kgCO2eq 

Computing 

capacity in 

SAPS 

Memory 

capacity in 

GB 

A 2018 899.00 219 5,504 8 
B 2017 4,599.00 500 11,543 16 
C 2011 293.00 400 4,017 24 
D 2008 235.50 370 3,868 8 
E 2010 173.95 543 6,853 4 
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Figure 1. Power consumption profiles for used server types2 

The objective function to be minimized in the optimization problem is formulated in 
Equation 1 (total cost per year), depending on the allocation of services to servers 𝑎: 

 𝑇𝐶𝑌(𝑎) =  1𝑦 ∙ (𝑎𝑐𝐶𝑜𝑠𝑡(𝑎) + 𝑎𝑐𝐶𝑂2(𝑎)  ∙ 𝑡𝑎𝑥 + 𝑜𝑝𝐶𝑜𝑠𝑡(𝑎) + 𝑜𝑝𝐶𝑂2(𝑎)  ∙ 𝑡𝑎𝑥) (1) 

In this function, the acquisition costs are the sum of acquisition costs for each used 
server, similar to the computation of acquisition emissions. For operational costs and 
emissions, the energy consumption of the allocation is computed according to 
Equation 2, depending on the power-usage effectiveness 𝑃𝑈𝐸 as well as server 
computing utilization level. The latter is in turn computed according to Equation 3. 

 𝐸𝑦(𝑎) = 𝑃𝑈𝐸 ∙ 365𝑦 ∙ ∑ ∑ 𝑝𝑜𝑤𝑒𝑟𝑠(𝑢𝑡𝑖𝑙(𝑠, 𝑎, 𝑡))𝑠∈𝑆24𝑡=1  / 1000 (2) 

 𝑢𝑡𝑖𝑙(𝑠, 𝑎, 𝑡) = (∑ 𝑐𝑡𝑤𝑤∈𝑊,𝑎(𝑤)=𝑠 )/𝑐𝑎𝑝𝑠  (3) 

Operational cost resp. emissions are then the product of the energy consumption and 
kWh price resp. emissions. As a constraint, an allocation must not lead to a utilization 
above 100%.  

The 𝑃𝑈𝐸 is set to 2.0, which is reported as average [30], and for the depreciation 
period 𝑦, three and five years are used in the experiments. In order to demonstrate the 
behavior in edge cases, two extremely different power mixes have been defined 
according to German supplier information3. These are compared in Table 3. The fossil 

                                                           
2 https://www.spec.org/power_ssj2008/results/power_ssj2008.html 
3 https://web-api.vattenfall.de/service-apis/download/document/90b85850-88ab-4275-9b18-

3423693f68e5 
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mix produces high emissions due to combustion of coal and gas while the renewable 
mix is considered with zero emissions. 

Table 3. Power mixes used in the experiments 

Label Price in 

€/kWh 

Emissions in 

kgCO2eq/kWh 

Fossil 0.17090 0.6901 
Renewable 0.23242 0.0000 

 
In order to investigate the effect of different carbon tax scenarios, five different tax 
levels are chosen:  

 a scenario with no carbon tax (𝑡𝑎𝑥 = 0),  
 a moderate carbon tax of 22 € as in France [11],  
 62 € as recommended by the International Monetary Fund [6],  
 120 € as in Sweden (highest carbon tax in OECD countries) [11]), and  
 180 € per ton CO2eq, which are the officially estimated climate costs in 

2016 for Germany [36]. 
With an increasing tax level, the emissions from the used IT components increase the 
total costs of the data center. Thus, server consolidation will have a drift to prefer 
low-emissive allocations that may have higher costs without taxation but lead to 
lower costs in taxation scenarios. With an increasing tax level, the role of the 
consumed energy to the total costs will depend more and more on the usage emissions 
of the used power mix.  

As exact methods may lead to execution problems for the large-sized cases due to 
scalability issues [37, 38], different heuristic (first- and best-fit-decreasing), meta-
heuristic optimization approaches ((grouping) genetic algorithms), and hybrid 
strategies (genetic algorithm for first-/best-fit allocation) are applied for solving the 
generated server consolidation problems and the best feasible results are reported. Cf. 
[35, 38–40] for details regarding the solution algorithms.  

4 Experimental Results 

4.1 Results for All Cases 

The results of all cases are presented in comparison to the optimization result of the 
baseline scenario. In this scenario, fossil power is used, and no carbon tax must be 
paid. In Table 4, the results of the baseline scenario are compared against the scenario 
with a carbon tax of 180 € in a 3-year depreciation period. The results of the 5-year 
depreciation period are presented in Table 5. For each case, the number of services to 
be allocated (|𝑊|) and the cost per year for the baseline scenario are displayed. 
Baseline increase refers to the additional cost of the 180 € tax level if the same 
allocation would have been used. The column optimization potential indicates the 
fraction of additional cost that can be avoided due to optimization efforts. Similarly, 

https://doi.org/10.30844/wi_2020_m2-bosse



 

 

the column GHG reduction states the relative reduction in emissions for the optimized 
allocation. The last three columns compare the baseline scenario to the scenario with 
renewable power and 180 € tax level. The cases, in which optimization potential has 
been addressed, are highlighted in gray. 

Table 4. Results comparing baseline and 180€ tax scenarios for a 3-years depreciation period 

# |𝑊| Baseline 

costs in € 
per year 

Baseline 

increase 

in % 

Opt. 

pot. in 

% 

GHG 

reduct. 

in % 

Baseline 

increase 

(ren.) 

Opt. 

pot. 

(ren.) 

GHG 

reduct. 

(ren.) 

1 5 441.79 62.1 4.0 37.0 33.5 0.0 0.0 
2 10 705.03 62.8 22.5 53.9 34.3 0.0 0.0 
3 9 785.08 62.3 12.6 25.4 33.8 1.4 58.3 
4 13 827.65 63.9 23.0 69.0 40.9 2.6 5.9 
5 11 931.98 66.6 0.0 0.0 36.1 0.0 0.0 
6 15 1,215.43 62.1 7.5 16.2 33.7 0.0 0.0 
7 10 1,339.42 64.0 0.0 0.0 34.3 0.0 0.0 
8 27 1,429.30 62.9 19.2 51.8 34.3 0.0 0.0 
9 80 2,203.53 63.7 0.0 0.0 34.2 0.0 0.0 
10 36 2,218.52 56.1 0.0 0.0 30.2 0.0 0.0 
11 28 2,224.91 57.4 21.7 40.1 31.8 8.3 55.2 
12 42 2,433.79 61.7 4.6 28.9 33.8 0.0 0.0 
13 18 2,682.93 29.8 5.2 15.6 17.0 1.1 43.6 
14 80 2,956.29 27.5 0.0 0.0 14.8 0.0 0.0 
15 30 5,215.68 47.3 6.9 7.2 25.5 6.9 10.0 
16 28 6,328.91 34.7 0.0 0.0 18.6 0.0 0.0 
17 27 7,610.76 13.0 0.0 0.0 7.3 0.0 0.0 
18 16 10,476.44 27.3 4.9 9.0 14.7 3.6 3.6 
19 44 12,271.32 40.8 34.2 46.6 22.1 24.8 43.0 
20 51 32,923.89 18.9 0.0 0.0 10.3 0.0 0.0 ∅ 29 4,861.13 49.2 8.3 20.0 27.1 2.4 11.0 

 
Due to higher acquisition and operation cost in the 180 € tax scenario, the maximum 
increase in cost per year is varying between 7 and 69% in relation to the baseline 
scenario. The additional costs to be expected depend heavily on the used power 
source and its associated emissions: for renewable power, the cost increase varies 
between 7 and 41 % (for fossil power 13 to 69%).  

Nonetheless, in 16 of 20 cases, optimization potential can be addressed by 
changing the allocation to achieve lower costs in comparison to the baseline 
allocation. If the optimized allocation changes, the additional costs can be decreased 
by 0.5 to 46% (5% on average for all cases and scenarios). If the allocation changes, 
also significant emission savings can be achieved, starting by 4% to reaching up to 
73% of original emissions (12.5% on average for all cases and scenarios).  

The low or non-existing optimization potential in some cases can be explained by 
the fact that either a low-emissive allocation is preferred even without taxation or that 
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an allocation with lower emissions would only be considered under tax levels higher 
than 180 €. Remarkably, emissions even increase in case 16 if a renewable power 
source is used in comparison to the baseline allocation. This can be explained by the 
fact that the optimization in the baseline scenario with fossil power puts more 
emphasis on usage costs. In the scenario of 180 € tax and renewable power, the 
acquisition costs account for a larger part of the yearly cost. Therefore, the allocation 
with higher emissions still leads to lower cost if tax is not higher.  

Table 5. Results comparing baseline and 180€ tax scenarios for a 5-years depreciation period 

# |𝑊| Baseline 

costs in € 
per year 

Baseline 

increase 

in % 

Opt. 

pot. in 

% 

GHG 

reduct. 

in % 

Baseline 

increase 

(ren.) 

Opt. 

pot. 

(ren.) 

GHG 

reduct. 

(ren.) 

1 5 389.21 39.7 0.0 0.0 23.2 0.0 0.0 
2 10 604.32 32.1 0.0 0.0 17.2 0.0 0.0 
3 9 688.70 50.8 0.0 0.0 26.8 0.0 0.0 
4 13 673.85 51.1 46.2 56.9 31.7 42.8 72.5 
5 11 869.72 68.8 0.0 0.0 36.0 0.0 0.0 
6 15 1,082.86 56.1 0.0 0.0 29.5 0.0 0.0 
7 10 1,237.55 67.0 13.5 19.9 34.9 7.8 26.5 
8 27 1,243.15 33.2 0.0 0.0 17.7 0.0 0.0 
9 80 2,031.20 66.8 17.1 31.0 34.8 4.6 36.0 
10 36 1,957.72 61.4 0.0 0.0 32.0 0.0 0.0 
11 28 1,860.93 39.7 0.0 0.0 20.7 0.0 0.0 
12 42 2,162.59 45.9 4.4 34.2 25.4 0.0 0.0 
13 18 1,984.27 37.9 12.6 13.9 20.6 14.1 43.6 
14 80 2,184.16 36.0 4.0 26.8 18.8 0.0 0.0 
15 30 4,286.56 51.6 4.8 7.5 26.9 3.3 4.7 
16 28 4,907.08 43.3 8.7 15.7 22.6 0.5 -20.7 
17 27 5,038.09 18.6 0.0 0.0 10.0 0.0 0.0 
18 16 7,660.14 34.1 3.8 3.9 17.9 3.7 3.8 
19 44 9,069.82 28.4 0.0 0.0 14.9 0.0 0.0 
20 51 22,852.43 26.2 0.0 0.0 13.8 0.0 0.0 ∅ 29 3,639.22 44.4 5.8 10.5 23.8 3.8 8.3 

 
However, the results show differences with respect to the depreciation period as well 
as to the used power mix. In Figure 2, the average savings in emissions depending on 
scenario and tax level are displayed with its 95%-confidence interval in blue. With a 
5-year depreciation period and regenerative power, increasing tax levels have not led 
to savings in emissions for any case. However, as the red curve indicates, the 
allocation with lowest emissions has been used in 17 cases even without carbon 
taxation. To optimize the remaining three cases in terms of emissions, higher tax 
levels would be required. Also, for a three-year depreciation period and regenerative 
power, only in a few cases the allocations change depending on the tax level, leading 
to significant savings only for a 180 € tax level. However, in the scenarios with fossil 
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power, emission savings can be achieved in many cases. The number of cases with 
the lowest emissions increases proportional to tax level, up to achieving allocations 
with lowest emissions in all cases for a 5-year depreciation period.  
 

 

Figure 2. Relative emission savings with 95%-confidence interval (blue) and number of cases 
with lowest emissions (red) depending on tax level. 

 

Figure 3. Increase in total yearly costs with 95%-confidence interval depending on tax level. 

Why a carbon tax is more effective if high-emissive power sources are used can also 
be seen in Figure 3, in which the relative cost increase is displayed depending on the 
tax level. While costs will increase by 36%-53% on average in the scenarios with 
fossil power, the cost increase in the scenarios with regenerative power is limited to 
2%-5% on average. Since server consolidation results adapt to the rising tax level, the 
relation between cost increase and tax level is not linear. 
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4.2 Detailed Analysis of Two Cases 

In order to get more insights regarding the optimization under different tax levels, 
two of the 20 cases presented above are analyzed in more detail. These are the cases 4 
and 15 since these show significant optimization potential in some scenarios and 
represent different problem sizes. 

In Fig. 2, the optimization results of case 4 are displayed for the different power 
mixes, depreciation periods, and tax levels. While the colored lines represent the 
objective values (yearly costs), the dashed lines compare these optimized values to the 
ones if the allocation from the zero tax scenario would be used. Next to each data 
point, the used server types in the allocation are presented (“AE4” refers to one server 
of type A and four of type E are being used for the allocation). 
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Figure 4. Optimization results for case 4 

Comparing the dashed with the optimized curves, it becomes obvious that most 
optimization potential in this case can be achieved in the scenarios with fossil power. 
The allocation differs from the baseline allocation first at 120 € tax for a 3-year and at 
62 € for a 5-year depreciation period. Additionally, the shift from fossil to renewable 
power becomes economically appropriate at a tax level of 120 € for both depreciation 
periods. In case a renewable power source is used in the beginning, the optimization 
potential will be significantly lower. Comparing the three different allocations that are 
reported, it can be stated that allocation “A3” is the most expensive in acquisition 
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costs but has lower acquisition emissions and power consumption than the other 
allocations. The allocation “DE4” is the cheapest in terms of acquisition costs but has 
a high power consumption which is penalized in higher tax level scenarios, especially 
if fossil power is used. The allocation “AE4” is a compromise of both extreme 
allocations and is used in scenarios in which the pressure of operational costs is not 
strong enough to justify the expensive allocation “A3”. 

Fig. 4 displays the results of case 15. Depending on the scenario, four different 
allocations are to be preferred from the cheapest and most power-consuming to the 
most expensive and least power-consuming. The allocation “BC4DE2” is 
recommended only in the baseline scenario. With higher tax levels, the allocation 
“ABC3D2E” is reported as optimal for a 3-year period. This also applies to the 
scenario with a 5-year period, zero tax, and fossil power. The allocation “A2BC3DE” 
is obtained in most of the other 5-year period scenarios, except for the 180 € tax and 
fossil power scenario, in which the allocation “A3BC3E2” is recommended.  
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Figure 5. Optimization results for case 15 

When the specific results of the analyzed cases are compared to the server types, it 
can be stated that the allocations mostly differ in the use of the server type A versus 
the types C, D, or E. While the latter ones represent rather outdated hardware with 
relatively high power consumption, but low acquisition cost, server type A has been 
recently introduced. Thus, it is more energy-efficient, but associated with higher 
acquisition costs. With an increasing tax level, the lower emissions of allocations 
relying on type A are more and more preferred. The same can be stated for the longer 
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depreciation period, in which the acquisition costs per year are lower. However, this 
does not necessarily hold for the scenarios with a renewable power source as the lack 
of usage emissions limit the cost increase massively in comparison to the scenarios 
with a fossil power source. 

Taking the results of all cases into account, the introduction of a carbon tax is most 
effective (from a GHG reduction point of view) the more emitting the used power 
source and the shorter the depreciation period. If the power source is low-emissive, a 
carbon tax will only affect the acquisition costs which considerably limits its 
influence on optimization efforts. With longer depreciation periods, operational costs 
are more dominant in the objective function even without a carbon tax. In both cases, 
consolidation approaches minimizing the power consumption will likely achieve the 
same results as cost minimization subject to carbon tax. 

On the other hand, a carbon tax will likely drive data center managers to prefer 
longer depreciation periods and low-emissive power sources, since these instruments 
will reduce the additional cost. In all cases, the renewable power source would be 
preferred from an economic point of view if a carbon tax between 80 and 100 € is 
introduced. However, investments in expensive, but energy-efficient hardware are not 
always beneficial with rising carbon tax levels, especially if the used power source is 
low-emissive. This can be seen by the fact that the allocation with the least GHG 
emissions is not preferred in every case for the scenarios with a renewable power 
source. In these cases, the higher acquisition costs of the most energy-efficient 
allocation cannot be compensated even with increasing tax level.  

It can be concluded that the introduction of a carbon tax will lead to increasing cost 
for data center providers. Server consolidation efforts can reduce these additional 
costs. In addition, considering longer depreciation periods or low-emissive power 
sources will reduce additional cost, especially for relatively high carbon tax levels. 
Combining these efforts, the carbon tax will have the desired ecological effect, 
driving data center providers to minimize GHG emissions. 

5 Conclusion 

Carbon taxes are regarded as an effective method to utilize economic mechanisms 
with the aim to reduce greenhouse gas emissions. While carbon taxes have already 
been introduced in 46 countries in different levels, in other countries it is heavily 
discussed. Data centers, as the backbone of the ongoing digitization, are emitting 
more and more greenhouse gases and can effectively contribute to reduce emissions 
by applying server consolidation in a low-emissive manner.  

In this paper, the effect of different carbon tax levels to data centers has been 
analyzed. For that reason, workloads from 20 data centers hosting enterprise systems 
are used to define experiments. For the allocation of these workloads, five server 
types have been defined for which emission information was made available. In the 
experiments, five tax levels (0, 22, 62, 120, and 180 € per ton CO2eq), two extreme 
power mixes (fossil and renewable), and two depreciation periods (3 and 5 years) 
have been considered. 
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While the results of the experiments are subject to some limitations (cf. Section 3), 
interesting conclusions have been drawn: first, a carbon tax can increase data center 
costs heavily depending on the used power source. While a carbon tax will likely 
increase server acquisition prices, the increase in energy price is proportional to the 
emissions per kWh of the power mix. Thus, a relevant carbon tax (above 62 €) will 
drive data centers to use low-emissive power sources. Furthermore, the experiments 
revealed that longer depreciation periods are to be preferred in order to save 
emissions. However, longer depreciation periods would also lead to higher 
uncertainty about future workload demands, maybe leading to more unused 
computing capacity and increasing emissions. 

Second, significant optimization potential for the yearly costs can be addressed in 
some cases using server consolidation. These efforts will also lead to significant 
emission savings, especially if a high-emissive power source is used. Two exemplary 
cases have been presented to demonstrate the influence of the experimental 
parameters on the optimal allocation of workloads to servers. However, the existing 
variety in available server types could not be considered in this work due to lack of 
data, especially for non-usage emissions. This increases the complexity of the server 
consolidation problem, so that even more optimization potential may be addressed.  

In order to provide more evidence for these conclusions, future work should focus 
on empirical investigations of the IT sector in countries with carbon taxation. This 
would also answer if the conclusions are transferable to other IT domains without 
seasonal workload pattern as it can be found in enterprise systems. Nevertheless, it 
can be stated that the introduction of a relevant carbon tax will likely have the desired 
effect in many cases, driving decision-makers to reduce emissions.  
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