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Abstract. People often make irrational decisions. With digital nudging, 
decisions made in online environments can be guided beneficially by adapting 
design elements of the user-interface and thus the user’s choice environment.
To evaluate the effectiveness of different nudging methods, modeling and 
simulation can be used. In this paper, we make a step towards preplanning of 
experiments to analyze nudging methods via simulation. To this end, we 
provide a model that replicates human behavior based on an experiment, that 
addresses gaming behavior in a digital environment. In a second step, the model 
is extended using several nudging methods in order to adapt the gamers’
decision-making. Experiments are presented that outline the model’s capability
to produce plausible results concerning human gaming behavior as well as the 
effects of nudging methods on decision-making. 
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1 Introduction 

People often make irrational decisions. This is due to cognitive biases that impact the 
perception of available information and can thus disadvantage the decision-maker. 
Those biases can have negative effects in situations as gambling [1, 2], decisions 
about investment strategies [3] or health behavior [4]. At the same time, if biases are 
used in a certain way, a decision can also be influenced beneficially. The term 
nudging summarizes methods that change a given decision architecture to generate 
behavior that is beneficial for the decision-maker or general public. Methods of 
nudging include, e.g., the provision of defaults and feedback, or structuring complex 
decisions. Nowadays, nudging is mainly used as a political instrument [5] to maintain 
health [6], sustainability and energy efficiency [7, 8]. As many decision-making 
scenarios, such as e-government, e-health or e-commerce, are moving to an online 
environment [9], nudging has already been adapted to it, too. Digital nudging mainly 
focuses on altering elements of the user interface in order to guide the user’s decisions
[9]. Before implementing a digital nudge, its effectiveness in encouraging the 
intended behavior should be ensured to prevent negative consequences. This paper 
aims at making a step towards an assistance and addresses the following research 
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question: “How can simulation be used to preplan experiments to analyze the effects 

of nudging in digital environments?”.  

The objective of this kind of early efficacy testing is twofold. First, both offline 
interventions and digital nudging raise ethical considerations, e.g., restricting people’s 
autonomy or  disadvantaging individuals [10, 11]. Undesired side-effects of 
interventions should therefore be excluded before they are applied to humans. In 
addition, simulation enables cost- and time-efficient testing of design variants and 
user-centric design through iterative adjustments, while laboratory experiments are 
limited to a few interventions and reactions of test persons. Therefore, an experiment 
is utilized that offers a controlled game-scenario and experimental results of 
participants’ actions in different states in the game. Here, the effects of the cognitive 
bias loss aversion are analyzed in several experiments. This paper introduces a model 
that in a first step reproduces the human behavior observed in the experiment. 
Subsequently, nudging is added to the model to encourage beneficial behavior. To 
adequately represent the human gamers, agent-based modeling (ABM) is used, as it 
has established in representing humans and cognitive decision-making [12–14].  

This paper is structured as follows: Section 2 presents basic elements of human 
decision-making and digital nudging, as well as relevant contributions of ABM in 
modeling human behavior. In addition, an experiment is presented that serves as an 
application example for this paper’s model. Section 3 introduces a model of human 
behavior in a situation of experienced loss aversion using ABM. In Section 4, this 
model is extended with nudging methods to influence the agents’ behavior throughout 
the game. Finally, Section 5 draws conclusions and gives an outlook on future work.  

2 Background 

It is frequently assumed that the decision-making of the human brain is a dual-system 
composed of an automatic and a reflective part [15]. The usage of the automatic part 
can both facilitate decisions and introduce errors, as the decision results are known to 
be biased due to heuristics [15, 16]. One of the biases hindering rational choice is loss 
aversion. Kahneman et al. define loss aversion as follows: “[…] the disutility of 
giving up an object is greater that the utility associated with acquiring it” [17]. An 
application of this bias is the endowment effect, which expresses that owning an 
object (or an option) increases its subjective value to the owner [17, 18]. Therefore, 
the loss of an object with a certain value has a stronger effect than the gain of an 
object of the same value. In addition, the status quo bias is closely related to these 
phenomena, since it implies the tendency of people to maintain their own status and 
thus the possessed objects (or alternatives) [17]. Many cognitive biases have been 
identified in decision-making related to information systems, loss aversion is one 
example [19]. For instance, product sales can be increased with purchase pressure 
cues (e.g., limited product availability) to enhance the expected loss and thus the 
likelihood of sale [20]. The order of product placement may influence the user's 
choice as it anchors the first product displayed and perceives each subsequent product 
as a gain or loss according to the characteristics of the first product [21]. 
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Heuristics and biases can be used to influence an individual’s decision-making 
towards certain choices [22]. To help people make better decisions, Thaler and 
Sunstein propose nudges, defined as “[...] any aspect of the choice architecture that 
alters people’s behavior in a predictable way without forbidding any options or 
significantly changing their economic incentive” [23]. In offline scenarios, nudging 
has been successfully used to influence individual decision-making in several areas 
such as environment protection [24], retirement saving [25], organ donation [26] as 
well as healthy eating [27]. 

Like in offline environments, choices in digital environments can be influenced by 
nudges as well. Weinmann et al. define this kind of nudges, called “digital nudging”, 
as “[...] the use of user-interface design elements to guide people’s behavior in digital 
choice environments” [9]. In digital environments, the influence on the outcome of a 
decision can be influenced by tools that concern what decision options are included 
and how these options are presented [28, 29]. For example, the decoy effect, the 
scarcity effect or the middle-option bias have been proven [30–32]. The first type 
describes the fact that the introduction of an unattractive choice raises the 
attractiveness of the existing options [31]. The second type describes the raise of 
attractiveness of an option by describing it as scarce [32]. The third type refers to the 
tendency of people to choose the middle option in a list of choices [30]. Digital 
nudging is gaining more and more relevance due to the increasing amount of 
decisions made on screen. In digital environments, any presentation of choices is 
influenced by the designer’s preferences and cannot be designed completely neutral 
[22]. Therefore, each design decision should be made with a specific goal in mind, 
e.g., increasing turnover or brand awareness. For instance, correctly set defaults can 
support customers by simplifying complex decisions and thus lead to faster purchase 
decisions [33]. Raising awareness for a platforms security settings via digital nudging 
can increase the user’s trust and with it the number of registrations and purchases  
[34]. To avoid undesired side-effects, it should be considered in the design process of 
a digital choice environment, e.g., by introducing suitable design principles or 
processes [22, 33]. 

 
Modeling Human Behavior. In contrast to top-down modeling techniques as system 
dynamics, that models the global system behavior and relationships in terms of 
differential equations [35], ABM models a system as a collection of autonomous 
decision-making entities called agents. Human decisions are assumed to be based on 
different information processing systems and biases affecting decision-making. 
Therefore, perception and processing of information and external influences have to 
be implemented. Furthermore, reasoning about the current situation and various goals 
pursued is needed. Agents can observe and assess their own situation, access their 
knowledge base and act according to a set of rules [12]. In addition, agents are 
capable of goal-oriented behavior and interaction with other agents as well as their 
own environment [36]. Based on this, ABM enables heterogeneous individual 
attributes, while system dynamics assumes each modeled compartment to be 
homogeneous and perfectly mixed [37]. Therefore, ABM is used here to model 

cognitive processes that include both psychological and behavioral theories [13]. 
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The dual-system approach introduced in Section 2.1 can be implemented using the 
subsumption architecture [38], where the agent defines multiple behaviors 
simultaneously in a principle of divide and conquer, and uses rules to determine the 
application of each behavior. This was realized by, e.g., [39, 40] which implement 
switching between the systems based on situational conditions and properties of the 
agent. Hence, the reflective system steps into action if these conditions are met. This 
paper follows a similar course and proposes, that the reflective system is constantly 
present but is ignored, if the automatic system is triggered by the agent’s perceptions. 
Therefore, we use different levels of cognition in the agent architecture. The 
automatic system is represented by simple conditional rules that make the agent react 
to perceptions, while the reflective system takes a deliberating part that tries to unite 
the pursued goals and make a rational (best) choice for the agent. 

In ABM, the loss aversion is mainly utilized in situations under uncertainty, e.g., in 
purchasing decisions [41] or in financial markets, where it is used to focus on timing 
of investment choices [42] or to predict price developments on the market [43]. 
Although there have been attempts to model agent decision-making in games such as 
the multi-armed-bandit game [44], existing models utilize a rather uniform use of loss 
aversion by valuing options solely based on monetary gains and losses. To encounter 
loss aversion and its negative impact on performance, this paper proposes the use of 
nudging methods. ABM implementing nudging are mainly found in social issue areas 
[45, 46]. These models primarily implement nudging based on the influence of the 
information provided. In health promotion, ABM is mostly implemented using the 
influence of social networks [47]. The models merely implement a method of 
influencing behavior. Often, however, a combination of different methods leads to the 
development of a desired behavior [48]. Furthermore, ABM is underrepresented in the 
field of nudging, especially in digital contexts. 

 
Loss Aversion: An Experimental Game Setting. The experiment in [18] serves as 
an application for the model developed in this paper. Here, the effect of loss aversion 
on performance within the scope of a modified multiarmed bandit game is examined. 
The general game setting consists of a recurrent choice to click on one of three doors, 
generating money with each click, that is paid to the participants after the game has 
finished. The doors have different gains, that result from set distributions centering 
around 3 cent per click. The gamer’s goal is to maximize his earnings within 100 
possible clicks without knowing the payoff distributions. Each click on a different 
door as the current, the gamer loses one of its remaining clicks and thus the possibility 
to gain money with it. To examine the effect of loss aversion based on options 
becoming unavailable, the authors conduct several experiments, whereby this paper 
focuses on two: The effect of decreased availability and the effects of cost saliency on 

the desire to keep options open. For each scenario, the best strategy is to stay on one 
door throughout the entire game, because then each click generates a payoff.  
In the first experiment, to integrate the cognitive bias of loss aversion the general 
game setting presented beforehand (constant option availability) is contrasted to the 
following version of the game: Doors start to shrink if the gamer clicks on one of the 
remaining doors. If a door is ignored for 15 clicks in a row, it vanishes (decreased 

https://doi.org/10.30844/wi_2020_k6-rodermund



 

 

option availability). Here, the authors make use of the scarcity effect described in 
Section 2.1. Furthermore, doors regain full size if clicked on once before they 
disappear. Theoretically the participants should increase their knowledge about the 
different distributions with increasing clicks and thus reduce the number of door 
switches. Whereas this behavior is shown in the general game setting, the decreased 
option availability scenario leads to a significantly higher probability of switching. 
The highest pitch is between 10 and 20 clicks, which is due to a first threat of doors 
disappearing. With this experiment, the authors show that participants are more 
interested in alternative options as they are jeopardized to disappear (loss aversion 
and endowment effect).  

The second experiment focuses on the effect of cost saliency on the desire to keep 
options available. Therefore, the authors add to the constant and decreased option 
scenario with implicit switching costs (gaining no money while switching doors) the 
juxtaposition of explicit costs for switching doors. Here, participants have to pay 3 
cent for each switch. The authors describe four scenarios in which reduced and 
constant option availability is crossed with implicit and explicit costs. The experiment 
results show, that the existence of explicit costs only marginally decreases switching, 
especially compared to the effect option availability has on this behavior. Hence, the 
authors show with their experiment, that the desire to keep options open predominates 
possible losses in monetary profit [18] (status quo bias).  

In the following section we attempt to imitate the participants behavior based on 
the findings in [18]. Subsequently, we model nudging methods in order to encourage 
the participants to a better performance by activating the reflective system and thus 
leading them to a more conscious and thoughtful action (see Sec. 4). 

3 Imitating Behavior: Simulating Participants 

We start by imitating the participants’ behavior as described in Section 2.3. The game 
is modeled as follows: We represent the participants as agents playing the game. The 
agent has three doors Doors = {d1, d2, d3} with different payoff distributions of which 
he can choose to click on each round. The agent’s goal is to maximize the possible 
payoff during t = 100 game rounds. One game round corresponds to one click in the 
original experiment described in Section 2.3. In each round, the agent decides whether 
to stay at the current door or switch to another and risk a lower payoff due to 
switching costs. To allow a realistic setting, the agent is not allowed to change doors 
before receiving a payment for the current door, i.e., he has to click on the same door 
at least twice in a row.  

 
Agent Behavior. An agent represents a participant in the simulation that tries to unite 
the conflicting goals of maximizing its own profit and increasing knowledge about the 
payoff distributions. First, we focus on the behaviors shown by participants in 
constant versus decreased option availability scenarios. Based on the considerations 
in Section 2.1, the agent is modeled using the dual-system approach (see Fig. 1). 
Thus, the agent perceives the current status of the game, which is transferred to the 
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agent's knowledge. Knowledge transfer is represented by dashed lines. The agent then 
uses the automatic followed by the reflective system to create an action that is then 
executed. After this, the knowledge base is updated with the currently selected door.  
 

 
Figure 1. Decision-making using the dual-system approach (left) and decision-

making in reflective system based on Simulated Annealing (right) 
 
We define the reflective part as being rational and conscious in the agents’ 

decision-making. It tries to unite the two opposing goals of maximizing the own profit 
and further specifying the payoff distributions. We theorize that without the pressure 
to keep options available, participants can usually make rational choices to maximize 
profit, meaning that the automatic part of the dual approach can be kept out of focus. 
As the agents do not know about the different payoffs, this influences the decision-
making by adding more variability to the doors chosen. At the start of a game, the 
agent has no concept of the different payoff distributions, which is why the degree of 
door switching is highest in the first quarter of the game. As knowledge increases, the 
number of switches rises with it and profit maximization becomes more important. 
This behavioral nature promotes the use of an adapted algorithm of Simulated 

Annealing [49] with a cooling temperature temp of n ⊂ t rounds (see Fig. 1). Based on 
round t and the actual door 𝑑current, the algorithm returns the agent’s next action 𝑑𝑛𝑒𝑥𝑡 , 
which is either the current door or a randomly chosen neighbour of it (𝑑𝑛𝑒𝑤) (where 
current, next, and new ∈ {1,2,3}). Based on the previous knowledge, the agent 
approximates confidence intervals of the three payoff distributions. If 𝑑𝑛𝑒𝑤  has a 
smaller interval (and thus a safer chance of a specific payoff of 3 cent), the agent 
switches to that door. Otherwise, he remains on the current door, unless temp is still 
on a high status. In this case, the algorithm provides a probability of switching either 
way, to find the best possible choice (see Eqn. (1)). 

 𝑒𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑑𝑛𝑒𝑤,𝑡)−𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑡)𝑡𝑒𝑚𝑝  (1) 

Additionally, the agent switches doors if he realizes, that the current doors’ interval 
interval(dcurrent,t) increased from the previous round. The agent’s goal of knowing 
about the different distributions is achieved by a threshold for switching 

https://doi.org/10.30844/wi_2020_k6-rodermund



 

 

clicksReached(dcurrent) ∈ ℕ, which allows the agent to switch doors only when this 
threshold of the number of clicks on the current door is reached, thus if he has 
collected enough information about the door. This is based on the assumption that an 
estimate of an interval can only be made on a list of several numbers of a distribution. 
The algorithm closes with a reduction of the temperature, which decreases the 
probability to switch in t + 1. 

By adding decreased door availability the agent architecture needs to be extended 
to represent the resulting perceived pressure (see Fig. 1). Therefore, the automatic 

part of the dual-system approach is included. First, the automatic system is triggered 
by the shrinking status of the currently not clicked doors statusDoor(d, t), which 
returns the number of rounds, door d has not been clicked on in round t. If this effect 
is strong enough, thus if one of the doors is about to be unavailable in the next round, 
the agent skips the reflective part of decision-making and switches to executing 
clicking on the endangered door deD defined by Eqn. (2).  

𝑑𝑒𝐷𝑡= argmaxd∈Door(pressure(d,t)), with pressure(d,t)=norm ((  statusDoor(d,t)|Doors|*15
) 2)    (2) 

Otherwise the agent decides for a door according to the reflective system. The 
pressure causing the automatic action is calculated by Eqn. (3) and returns thdP, a 
threshold defining the turning point of making an informed versus a spontaneous, 
automatic decision. Because the freedom of choice and flexibility has proven of being 
more valuable than a high payoff or a good performance [18, 50] and the options most 
threatened are normally considered the most valuable [32], the pressure of deD (with 
eD ∈ {1,2,3}) at round t is used as the threshold for pressure. The pressure ∈ [0,1] for 
door di is determined by a quadratic function using the number of rounds the door has 
not been clicked and the number of doors still available. Therefore, the pressure to 
keep doors open increases with decreasing option availability. If the agent reacts to 
this pressure, thdPt  is defined by its resistance to the current pressure resistancePt, 
that is implemented as a random number in a range between [0, 1].  

 thdPt = 𝑚𝑎𝑥𝑑∈𝐷𝑜𝑜𝑟𝑠 (pressure(d, t))  (3)  

The agent’s reaction to explicit cost is implemented as follows: First, in the decreased 
option scenario the explicit cost component is only included, if the pressure does not 
exceed a certain value. This value is defined by the merit that thdPt takes, if one of the 
available doors is close to disappearing in the next round. Furthermore, cost is 
modeled as an increasing sensitivity against explicit switching cost. As knowledge 
about the distributions increases, each decision to switch is weighed more thoroughly 
against the fix costs. Therefore, we model the probability of being influenced by costs 
using an exponential function based on the current number of rounds.  

Design of Experiment. To evaluate the model, we define four simulation runs using 
an element of the cartesian product of:  
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{Decreased availability, Constant availability}× {Implicit cost, Explicit cost}. 
 

Each simulation run is executed using one agent playing the game. Because the model 
uses random number generators, each of the settings is repeated 100 times. As 
mentioned in Section 3.1, the door switching is highest in the first quarter of the 
game. Therefore, we set the cooling temperature of the Simulated Annealing 
algorithm to      t/4 = 25. Furthermore, the number of clicks clicksReached(dcurrent) 
that in the reflective system determines the time the agent is capable of switching 
doors is set to 7, as this is the highest possible number that does not force the agent to 
let one door close while getting to know about the different distributions (one door 
closes after 15 rounds not clicked on in row). The cost function is adjusted to the 
pressure resulting from one door being endangered of closing (not clicked on for 14 
rounds). This leads to costs being included in decision-making, if 

thdPt > norm (( 14
3*15

)2) ≈ 0,44.  

 
Simulation Results and Interpretation. Fig. 2 shows the results of the four defined 
simulation runs. The line plot on the left shows the comparison between decreased 
and constant availability with implicit costs, the bar plot on the right contrasts the 
decrease of switches in the implicit versus explicit cost scenarios. The line plot 
presents the mean of the defined scenarios throughout the 100 simulation runs, the 
error bars show the difference to the data set described in [18]. Following the authors’ 
notation, we present the simulation results by means of 10 blocks, whereas each block 
contains 10 clicks in a row. Throughout the blocks, the distance between the 
simulated and original data of the constant availability scenario adds up to around 1.5 
switches, whereas most blocks overestimate the original data. This is because many 
restrictions in the agent's decision making can lead to a door change, e.g. if the newly 
chosen door has a smaller interval or the interval of the current door has become 
larger, thus decreasing the agent's safety. The biggest difference is seen in the third 
and fourth block with approximately 0.4 switches. Although the original experiment 
shows a small rise in the fourth block, too, the previous block is originally defined by 
a decrease in door switches. On the whole the simulation approximately imitates the 
original curve’s tendencies. The same applies to the decreased door availability 
scenario. The sum of distances between the mean of the simulation runs and the 
original experiment amounts to about 1.3 switches. The largest distance is present in 
the fourth block and is an overestimation of about 0.35 switches. Block 1, 2 and 10 
slightly point in the opposite direction as the real data with up to 0.15 switches. From 
the third to the ninth block the simulation overestimates the experimental findings. 
This results from the automatic system and the pressure contained therein, as it skips 
the reflective part completely if the pressure is high enough. In a more advanced game 
stage the reflective system almost always defines the current door as the best, which 
leaves the pressure as the only force of switching doors. Basically, there is a distance 
between the sum of switches in the decreased versus the constant option scenario of 
about 9 switches.  
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Figure 2. Switching behavior of agents in decreased vs. constant availability (left) and in 
implicit vs. explicit scenarios (right) 

Adding explicit cost to the scenario of decreased as well as constant availability 
leads to the resulting bar plot on the right side. The bars represent the percental 
difference in switching behavior from the implicit to the explicit cost scenario in the 
two availability options resulting in the simulation. The error bars again show the 
distance to the original data, which sums up to approximately 8 %. The constant 
availability option thereby produces a distance of only 1 %. The second scenario of 
decreased option availability overestimates the effect of cost saliency (see Section 
2.3). This may stem from the rather strict definition of a decreasing sensitivity, that 
leads to the inclusion of costs in the deliberation process.  

4 Improving Decisions: Simulation of Nudging 

In a second simulation, we aim at manipulating the agents’ behavior by using nudging 
methods. Default is used to influence the automatic system, because it has proven to 
make a statistically significant difference in human behavior, namely adhering to the 
default with a higher probability than choosing another option [51]. Furthermore, 
information is provided to the agent, in order to lead to a more deliberate decision by 
activating the reflective system. The game is modified as follows: The next door is 
per default set to the currently chosen door. This is because the best strategy for the 
agent is to stay on one door throughout the game, as this does not incur any (implicit 
or explicit) switching costs and thus guarantees the highest possible payoff. If the 
agent decides for another door, the game answers with the question whether the agent 
wants to change the door safely and a reminder that this causes costs. Using this, the 
action the agent is about to execute next is presented as a loss opposed to the expected 
gain (keeping an option or resetting the shrinking status) (see [29]). With these 
nudges, the agent is forced to think about his recent decision and may redeliberate, 
before deciding to actually execute it. This results in better performance as the 
automatic is slowed down and the reflective part is used more intensively.  
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Agent Behavior. Compared to the first simulation in Section 3, neither the agent’s 
goals nor its knowledge about the game-specific attributes have changed. The agent’s 
experienced pressure through the shrinking doors (thdPt) remains unaltered, too, but 
the probability of being influenced by it is reduced through the effect of nudging 
methods. For a start, a general probability pnewDeliberation ∈ [0,1] is set, that defines 
whether the agent is basically willing to deliberate about another door in the first 
place. This probability decreases in each new decision cycle, in order to represent the 
falling tendency to overthink a chosen behavior for several times and is reset if the 
agent executes an action. If the agent is ready to reconsider his decision, the 
probability to react to the pressure, thus the agent’s resistance to it, is increased in 
each step of redeliberation. For this, a new value intensityNudge ∈ [0,1] is introduced. 
Each step, the resistance to pressure resistancePt is increased by using a random 
number in an interval between 0 and intensityNudge (see Eqn. (4)).  

 resistancePt = resistancePt + resistancePt * random[0, intensityNudge]  (4)  

Using this, a nudge is varied in its impact on decision-making. With respect to Fig. 1, 
a step is added before the actual execution that leads back to the perception and starts 
a new cycle with an increased resistance to pressure. Hence, using nudging methods 
the agent experiences a defocusing from the existing pressure.  

 
Design of Experiment. The second experiment consists of two different simulation 
settings, that focus on decreased option availability. The switching costs can either be 
implicit or explicit and nudging is used in both scenarios. This leads to the following 
scenario setups:  

 
{Decreased availability} × {Implicit cost, Explicit cost} × {Nudging methods}. 

 
The probability to start a new decision cycle pnewDeliberation is set to 0.5 and in each 
cycle decreased by steps of 0.1. In order to observe the impact of the nudging 
methods, the value of intensityNudge is varied in steps of 0.1 within range [0.1, 1.0]. 
As in the first experiment, each simulation scenario is run for 100 times.  

 
Simulation Results and Interpretation. Figure 3 depicts the results of the simulation 
runs. The upper curve represents the development of the mean of switchings in a 
scenario with implicit cost. The lower curve shows the results for the explicit cost 
scenario. The curves have a similar course, whereas the mean difference between the 
two scenarios is approximately 3 switches. The lower explicit cost curve shows a 
relatively constant decrease from 6.29 to 5.63 switches. From intensityNudge = 0.2 to 
0.3 the biggest step implies a decrease of 0.15 which equals. This results from the 
values of tdP, which lie below 0.3 in 60 % of all cases. After this, a constant fall of 
the curve takes place until intensityNudge = 0.7. Up to 1.0 there are hardly any 
changes in the switching behavior. The value of thdP only randomly takes values of 
this range (only 10 percent of all cases).  
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Figure 3. Switching behavior of agents in implicit vs. explicit cost under impact of nudging 
methods 

Generally, the agents make 4 switches less in contrast to the same scenario 
(Decreased availability × explicit cost), which leads to a gain of about 30 cent (235 
without nudging, 263 with nudging). Even if this is compared to the implicit cost 
scenario without nudging, a profit of about 20 cent can be noted. This implies, that the 
effect of nudging methods is fully present even at a very low perceived intensity of 
the nudging methods. In comparison to implicit cost the curve of explicit cost remains 
very stable along the whole parameter space of intensityNudge, which means that the 
values vary from 8.99 at intensityValue = 0.1 to 8.80 at intensityValue = 1.0. 
Nevertheless, the overall mean of the number of switches is approximately 8 switches 
lower than in the experiment (decreased availability × implicit cost) described in 
Section 3, which leads to a gain of approximately 40 cent. This once again shows how 
a nudge can influence behavior at a low perceived intensity, even if a new 
deliberation cycle is only started in about half of all cases. Therefore, this simulation 
shows how nudging can theoretically defocus the agent from its experienced loss 
aversion and thus the pressure to keep all options (automatic system) and focuses on 
deliberating about the best choice (reflective system) and a better performance. 

5 Limitations and Future Work 

As this work makes a first step towards support for simulation-based preplanning of 
experiments, there are some limitations that require further investigation. First, this 
research is exploratory and is built upon assumptions about the impact of nudging 
methods and the agent’s reaction. For this, we used intensity values for nudging and a 
randomly set resistance of the agent against the perceived pressure caused by 
decreased option availability. Besides the introduced factors, additional characteristics 
of individuals such as personality and other biases impact decision-making and 
susceptibility to manipulation. To calibrate and validate the model in this point, we  
conduct additional experiments using triangulated perceived data (i.e., personality 
traits   [52–54], cognitive workload [55–57], concentration [58]) and physiological 
sensor data (i.e., electroencephalography [59, 60], electrocardiogram [61, 62], 
electrodermal activity [63, 64], eye fixation [65, 66], eye pupil diameter [67, 68]). 
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Secondly, the use of simulations creates a disadvantage corresponding to one of 
laboratory experiments. It creates an artificial environment that allows for exclusion 
of external factors but reduces the generalizability of the model. To adapt the model 
to other contexts as well as cognitive biases and nudging methods it has to be 
considered, that cognitive biases differ both in the extent and focus of their influence. 
For example, biases related to human perception (e.g., framing) manipulate 
information processing, while other biases directly affect decision-making, e.g., 
adherence to a decision, although alternative information might suggest a better 
alternative (loss aversion) [19]. Therefore, for adaption of the model to other contexts, 
different aspects of the agent’s decision-making process need to be improved, for 
which we lack appropriate data for calibration and validation. Hence, as a next step 
we plan on conducting the experiments described in this paper in the real world and 
making use of measuring methods, e.g., as in [69] to improve the existing model. 

6 Conclusion 

This paper's aim was to make a step into the preplanning of experiments to analyze 
the effects of digital nudging. To achieve this goal, the accompanying research 
question focused on the use of simulation. To this end, a model was introduced, that 
in a first step replicated the behavior of human gamers based on the findings of an 
experiment described in Section 2.3. Subsequently, the model was extended using 
several nudging methods for the purpose of guiding gamers towards beneficial 
behavior, improve their performances. We were able to reproduce the participants 
behavior in the initial model. Furthermore, simulations with the extended model 
produced plausible results concerning the influence of nudging on the participants’ 
behavior. 
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