
15th International Conference on Wirtschaftsinformatik,

March 08-11, 2020, Potsdam, Germany

Blockchain-based Cross-Organizational

Execution Framework for Dynamic Integration of

Process Collaborations

Philipp Klinger1
, Freimut Bodendorf1

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Wirtschaftsinformatik,

insb. im Dienstleistungsbereich, Nürnberg, Germany

{philipp.klinger,freimut.bodendorf}@fau.de

Abstract. Cross-organizational business processes involving multiple

participants are choreographed, thus rely on mutual trust of collaborators or

need to be coordinated by a central instance. Using Smart Contracts, business

processes can be executed without a mutually trusted and centralized

orchestrating authority. Former Blockchain-based execution framework

proposals focus on orchestration diagrams as a basis for execution. Contrary,

this work focuses on BPMN process collaboration diagrams as implementation

basis and makes additional transformation steps obsolete. With the herein

proposed framework for execution of cross-organizational process

collaborations, another approach for the implementation and execution of inter-

organizational processes on a Blockchain is presented, including a voting

mechanism for process deployment as well as a subscription service to facilitate

process handovers between participants more efficiently. The framework is

exemplified and evaluated with a use case from a large German industrial

manufacturing company.

Keywords: Business Process Management, Blockchain, Process Collaboration,

Process Execution Engine, Ethereum

1 Motivation and Problem

Blockchain technology may serve for further use cases than just enabling the secure

exchange of digital assets in a distributed peer to peer network. Some of these cross-

organizational use cases can, for example, be seen in the production of and

provenance of goods [1], logistics and supply chain [2], the energy markets [3], the

public sector [4] or other highly regulated sectors [5].

In these inter-organizational processes, involving multiple process participants, the

execution of business processes is often cumbersome as many different, to a large part

incompatible frameworks, data-exchange protocols or computing systems are in use

[2]. Traditional Business Process Engines cover the intra-organizational handling

respectively orchestration of business processes well but offer limited support in

handling mutual exchange of process data in multi-company settings [6]. With a

https://doi.org/10.30844/wi_2020_i2-klinger

mailto:%7bemail%7d@university1.de

growing number of legally distinct organizations participating in a process, the inter-

connections between current Business Process Engines results in a combinatorial

explosion in relation to the number of participants. Keeping all participants informed

about the overall process state is a complex integration problem [7]. This is in practice

solved following well-known B2B integration patterns, e.g., a Hub-and-Spoke

architecture, Middleware- or Enterprise Service Bus solutions [2], [8].

 Another problem of collaborative processes are adversarial settings in which

participants do not trust each other to follow previously defined process steps [9, 10].

Therefore, trusted third parties (TTP) mediate non-trusting participants and verify

actions or enforce the correct execution of a previously defined workflow. Downsides

of a TTP in place are its compensation resulting in higher run-costs and additional

operational delays or increased lay times during process execution.

 Our contribution is an Ethereum-based process execution framework for cross-

organizational process collaborations. The proposed solution solves the previously

stated problems of integrating multiple parties in adversarial process settings. Smart

Contracts are used as a mechanism to enforce a trusted and immutable process flow

making the need for a TTP obsolete. Existing solutions focus on holistic on-chain

execution of a multi-party process based on BPMN process orchestration diagrams

[11–14]. Contrary, our proposed solution relies on BPMN collaboration diagrams as a

starting point, without the need for additional transformations prior deployment. We

also introduce an option to treat certain process participants or participating

information systems (IS) like black boxes introducing a Subscription Service. This

option is in line with our belief, that eventually execution of only adversarial process

segments is needed on-chain, while other process collaborators, e.g. another IS or

legacy process engine, in a collaboration model may be treated as private and only

should react on defined inputs and communicate processed outcomes. The

Subscription Service, as well as a multi-signature voting contract, are presented as a

means to distribute run- and deployment costs fairly amongst participants.

Core concepts are introduced in section 2. Artifact design and implementation

details will be given in sections 3 and 4. After a quantitative evaluation and

comparison to related work, we conclude our findings and present future research

opportunities.

2 Background

The Blockchain as a concept was first introduced by the cryptocurrency Bitcoin [15].

A Blockchain is a software system that acts as a distributed ledger in a peer to peer

network of nodes that run a client software defining the Blockchain protocol. Through

a distributed consensus mechanism that is part of the protocol specification, the peers

of a network can synchronize with each other and create a universal truth in the form

of a shared, transparent and consistent history of transactions. To store and

communicate the transactions of the network efficiently, blocks are used as a data

structure carrying the transactions. As the name Blockchain suggests, each newly

added block is linked and also secured by making use of a cryptographic hash

https://doi.org/10.30844/wi_2020_i2-klinger

function on the contents of the block. Changes in the history of transactions become

detectable and the system is, therefore, tamper-proof [16].

A Smart Contract is a program that resides as bytecode on the Ethereum Blockchain.

These contracts are usually written in Solidity or other higher-order programming

languages that may be compiled to Ethereum Virtual Machine (EVM) compatible

instructions. Next to transferring value, an Ethereum transaction may additionally

carry data payload to deploy a Smart Contract or invoke a state-change in the EVM

by executing functions. Transactions are the only way to perform state changes in

Smart Contracts. These state changes may be triggered by EOAs (Externally Owned

Account) or other contracts, whereas all contract-initiated actions can always be

traced back to an originating transaction issued by an EOA, thus a person or a

machine owning a private key used to sign the initiating transaction. Once a

transaction is mined into a block, state change computations will be performed by the

EVM and the resulting transaction receipt is recorded on-chain. Also, corresponding

event data is stored in an Ethereum Block, if instructed by a contract. Events can be

used to log arbitrary data on the Ethereum Blockchain. Every EVM execution

operation, e.g., performing computations, storing values or emitting events, is priced

with gas, an Ethereum internal calculation unit. The total sum of gas for all operations

executed multiplied by the current gas price of the Blockchain network results in the

total price in Ethers that needs to be paid to execute those operations respectively

transactions triggering the execution. In consequence, excessively expensive

operations like the creation of new contracts, the use of storage and therefore gas-

intensive writing operations should be used sparsely to keep execution as well as

deployment costs on a minimum. [17]

3 Conceptual Design

The presented work on the following execution framework is part of a larger effort to

implement a decentralized Business Process Management System based on Ethereum.

Other components of the umbrella framework, like the graphical user interface for

convenient process execution and monitoring, will not be covered in this paper. Our

framework proposes a solution to the challenges of cross-organizational collaboration

in adversarial settings to collaboratively execute all or only parts of a highly

structured process using Smart Contracts without the need of a TTP.

3.1 Design Decisions

Following design choices characterize our approach (cf. section 5.3 for related work):

Simplicity of process to contract conversion: Contrary to [12, 13] we create

contracts from a BPMN collaboration diagram without the need for a previous

conversion from a collaboration to a single-pool (process orchestration)

representation.

The collaboration diagram-based approach is straight-forward and does not yield

the possibility to confuse process stakeholders with different process visualizations to

https://doi.org/10.30844/wi_2020_i2-klinger

the ones used for implementation. In addition, the single-pool approach is ambiguous

in expressing responsibilities and handoffs between collaborators in big process

models and bears the risk of process inflexibility due to non-upgradeable contracts

implementing the process [18]. Our collaboration-based approach enables flexible

integration of process segments that are handled on-chain without the need of a TTP

as well as off-chain process segments, that may be implemented by traditional

enterprise systems to interact with deployed process contracts on the Blockchain. On

the other hand, in the single-pool approach, all participants must interact on-chain

without the possibility of any process changes after deployment.

No single authority: Whereas [12–14] rely on an administrative entity to deploy

process contract(s) during build-time, our proposed solution builds upon a non-

authoritative voting-based system. It is used to dynamically deploy and subsequently

administer roles and access rights during run-time. Changes to initial process settings

require agreement by all entitled participants of the process in the form of proposals

that must be signed by all participants or a previously defined threshold of process

participants. The voting contract, once set up, is used to pay expenses as an EOA for

subsequent contract proposals respectively proposal executions.

Fair cost distribution: As there is no single authority deploying the process

contract(s) as in [10–13], costs must be distributed fairly amongst collaborators for

the deployment through the submission of a contract creation proposal in the Voting

Contract which must be signed by the collaborators before taking effect and

execution.

Generally, costs split up in deployment costs for the shared, static part of the

execution framework, and deployment costs for the dynamic contract components that

build up the process definition. In an optimal setting, runtime costs for the execution

of process instances are paid for by every participant in relation to his executed

activities.

Optional subscription service: To integrate off-chain enterprise software such as

legacy workflow systems or BPMS, a Subscription Service similar to the “active

mediator” [13] can optionally be installed by a process participant to manage

automatic workflow handovers. While frameworks rely on a centrally installed

component [12, 13, 19]. In our framework, no central component is needed, e.g.

message-receiving participants may either automatically react to the message-handoff

by using the optional Subscription Service watching respective message events or

react manually, without such a service running, to the handoff. Each participant may

optionally install the NodeJS-based Subscription Service (locally) to react upon

events emitted by direct communication partners. This helps to reduce lay times and

attributes to fair cost distribution amongst participants during the execution of

contracts.

Process logic as an auditable state machine: For every participant respectively

pool in a collaboration diagram one process contract will be instantiated. In order to

transform process flow to Solidity, states of the workflow must be known (c.f. section

4.2) to create a finite state machine representation of the workflow [20].

Process auditability: During process execution, we write actions of noticeable

events to the Ethereum event log, e.g. when an activity was successfully performed or

https://doi.org/10.30844/wi_2020_i2-klinger

to indicate handoffs to other participants. This is similarly done by other frameworks

like [12–14]. The logs form an auditable execution trail that may be analyzed using

process mining [21, 22]. Other frameworks, like [12, 19], rely on centrally installed

components while our framework does not rely on a central component. A message-

receiving participant may either automatically react to the message-handoff by using

the optional Subscription Service watching respective message events or react

manually, without such a service running, to the handoff.

Network agnostic framework: Our framework is designed to run in public as well

as private Ethereum Blockchain network environments. Depending on the use case,

one may choose a private network over a public network to avoid data-privacy issues

in the first place when transacting with sensitive personal or process data.

3.2 Execution Framework Contract Design

Components of our execution framework may be logically separated into static and

dynamic components as shown in Fig 1.

Once collaborators decide to transact in collaborative processes as a consortium on

the Blockchain, static components (I) serve as a base framework layer. These

contracts are deployed just once per execution framework instance and mainly offer

management functionality, e.g., for keeping track of consecutively deployed process

definitions, managing participants’ access and execution rights or voting for new

process deployment proposals through a multi-signature voting contract.

The dynamic components (II) need to be executed and deployed per collaborative

process definition (collaboration diagram) by the consortium. Static components of

the framework give instructions on how dynamic components must be structured and

therefore guarantee interoperability with the execution framework.

Fig 1. Architecture of the execution framework with static (I) and dynamic (II) components.

Based on previously stated design decisions (cf. section 3.1) and distinction in static

or dynamic components, we propose the following contract design as shown in Fig 2.

Static components (I): The static components are just deployed once to the

Blockchain per collaboration consortium and therefore behave like singletons.

https://doi.org/10.30844/wi_2020_i2-klinger

Contract libraries include common functionality, that is reused amongst more than

one contract and help to reduce deployment costs. A segregated data storage contract

is used to decouple contract logic from instance data payload [20].

All contracts inheriting from an Abstract contract copy all implemented

functionality defined in the abstract contract and may extend this functionality

fulfilling given method definitions (cf. Fig 2). Inheritance is used to standardize

framework interfaces.

The VotingContract allows the creation of, voting on and execution of proposals. A

proposal is an encoded transaction, that needs the agreement of several consortium

members of the instantiated execution framework to be executed. Such a transaction

may implicate the deployment of a new contract (contract creation transaction) or the

execution of other contract functions (through a contract transaction) altering contract

state. A contract creation transaction we make use of is the instantiation of the

ManagingContract. Whereas a contract transaction would be an update of the owner

address variable in the ManagingContract. This would be needed if a VotingContract

reference inside the ManagingContract must be swapped out in favor of another

owner address, i.e. another consortium, to accept orders from.

The main functionality of the ManagingContract is to store the contract address of

the eligible VotingContract that may perform administrative actions and managing

contract address references of CollaborationContracts.

Fig 2. Contract design of the execution framework split into static (I) and dynamic (II)

components (cf. Fig 1) with two transformed collaboration definitions (A and B)

Dynamic components (II): Each process definition leads to a separate

deployment, that may be dynamically added to the framework during runtime. The

Transpiler component (cf. Fig 1) parses the given BPMN for the collaboration

identifier string, and names the resulting CollaborationContract (cf. Fig 3)

accordingly. All functionality of the created Solidity contract e.g. functions, type

definitions or events are inherited from an AbstractCollaborationContract template,

https://doi.org/10.30844/wi_2020_i2-klinger

thus guaranteeing interoperability with the other components of our execution

framework. Each participant in the BPMN collaboration diagram will be transpiled

into a ParticipantContract implementing state definitions (also see section 4.2) and

genuine state management functionality as defined by the

AbstractParticipantContract base template for each ParticipantContract. Contract

address references of deployed ParticpantContract are managed in the corresponding

CollaborationContract.

4 Prototype

4.1 Use Case

To showcase the feasibility of the hereby presented approach, a simplified BPMN

collaboration is presented which expresses the handling of a multi-stage distribution

channel process for spare parts handling of a large German electronics manufacturing

company with worldwide distributed embassies in different countries (cf. Fig 3).

Fig 3. Simplified BPMN collaboration diagram of a spare parts process, stemming from a large

German electronics manufacturing company, including transaction boundaries (T)

In the implemented legacy process at the electronics manufacturing company,

standardization of communication interfaces and managing the interconnections of the

actors involved in the process on a worldwide level are a constant problem. Since it is

a customer-facing process, it must be optimized for process quality as well as fast

https://doi.org/10.30844/wi_2020_i2-klinger

throughput. This is currently a challenge due to inconsistencies in process

enforcement across different regional branches as well as lacking transparency of the

current process state, which in return results in high lay times.

4.2 Contract Interaction and State Management

Regarding the VotingContract, we currently make use of a slightly adapted version of

the Ethereum DAO with arbitrary bytecode execution functionality [23]. Using this

VotingContract, a consortium of participants may, once assembled, vote on new

proposals to execute (via its executeProposal method [24]) or create new process

definitions as Smart Contract deployments. Other frameworks [11–14] rely on a

central entity to administer and deploy new process models. Since all proposals need

to be passed in as bytecode in our approach and need to be voted and accepted prior to

execution, it naturally comes at greater costs than a supervised deployment. After the

VotingContract is set up by an EOA in the first place, static and dynamic contracts

can be deployed. Although static contracts can be set up as well through the

VotingContract, its greatest perceived benefit lies in a cost-fair instantiation of new

Participant- and CollaborationContracts. In the case example, four entities take part

in voting.

The ManagingContract acts as a simple contract register [20, 24] to administer

different process definitions. It saves CollaborationContract address references and

provides lifecycle methods for the management of collaborations. A

ManagingContract that administers CollaborationContracts is always owned by a

VotingContract reference and may only be altered by the VotingContract address.

To keep track of all generated ParticipantContracts, the associated

CollaborationContract also acts as a simple register enabling lookup and interaction

between the participants. Also, meta-information supplementing the process

definition is stored in the CollaborationContract, e.g., the current process version to

the respective contract deployment addresses and a hash value linking the

corresponding BPMN file used to generate the contracts as a reference [24]. The

CollaborationContract implementation also keeps track of process instances, their

creation, and its logging.

From the given process model in Fig 3, using the Transpiler, we derive one

CollaborationContract and one ParticipantContract per given pool in the diagram:

Customer, RepairCenter, RegionalBranch, and Headquarter.

Every concrete ParticipantContract keeps track of its own states as an array of

bytes32-values (cf. 5.1). In order to derive the states, our approach is to align process

states with BPMN transaction boundaries. The result is an array of wait states

expressing places where process instance tokens can reside. In our adopted definition,

wait states are Receive- or User tasks, Message-, Timer- or Signal-events and the

Event-based Gateway in BPMN [25] and are separated by transaction boundaries (T).

The number of wait states in a pool is thus: the number of derived transaction

boundaries T per pool plus one. Our NodeJS-based Transpiler module (cf. Fig 1 and

Fig 4) parses the states from a given BPMN file according to rules defined by [25]

and builds the state transitioning functions in every ParticipantContract for the

https://doi.org/10.30844/wi_2020_i2-klinger

respective wait states derived. For the RegionalBranchContract, five states are

derived, which are stored in a bytes32 array. The values of this array are extracted by

the Transpiler, in our case the element’s id attribute prior to a subsequently identified

wait state. Deriving unique identifiers that correlate with the BPMN elements is

crucial for highlighting process flow in a frontend and to generate meaningful log

statements.

Choosing the execution steps according to the wait-state approach is beneficial,

since Ethereum transactions may fail due to various reasons. This may happen, e.g., if

requirements during contract execution are not fulfilled and the contract initiates a

“throw” to end execution or if other internal failures like an out of gas error occur

when a maximum execution depth is reached. In our execution framework, the wait

state transitions performed by Ethereum state transitions through transactions directly

mimic ACID properties of transactions of RDBMS used for process state transitioning

of common process engines. If a process engine would fail in case of failure during a

state transition, i.e. a service is unreachable or a message cannot be sent, the process

state rolls back to the initial state and a retry will be scheduled. Similarly, on

processing failures in Ethereum, the rollback is a default behavior handled by the

EVM.

As the states of the process model are identifiable with the method described

above, a state machine representation of the workflow can be created. For every wait

state derived from the process model, one state transition function must be

implemented in the respective ParticipantContract. State transition functions are

named as encoded in the states array and check the entrance eligibility by comparing

current state with the state required for execution using Solidity function modifiers.

Additionally, execution capability is checked rudimentarily using another allowance

modifier. If any checks fail, the EVM reverts and the state does not progress. If all

checks resolve, the wait state payload is executed, e.g., performing calculations,

making calls to other contracts. Afterward, the current state is logged emitting a

Solidity event for traceability. Lastly, another modifier will alter the state to the next

eligible state and the previously described procedure recommences with the next

process (wait) state.

4.3 Event Logging and Event Subscription Service

If an activity or task is performed by a participant, the state of the process is logged

emitting an event. This concept resembles the event log of traditional process engines,

whereas the event logs are stored in the Ethereum Blockchain block-structure. The log

structure used by our implementation comprises the event emitter (participant

address), the collaboration contract address, a process instance ID, the activity

performed, as well as the user identifying wallet address that triggered the activity.

Additionally, the block number and thus the (rough) execution time may be recovered

from the block header.

All emitted and persisted events of a process combined form an audit trail on the

Blockchain that is retrieved using a watcher script running on a local Ethereum client.

Watchers can be installed listening to certain emitting addresses or topics filtering for

https://doi.org/10.30844/wi_2020_i2-klinger

the retrieval of events in a certain range of blocks, all blocks, or only newly created

blocks. This approach resembles a Publish/Subscribe messaging pattern [8] often used

to decouple systems. In a similar fashion, this pattern decouples process participants

in our framework. Our Subscription Service, which is an optional software component

offered by our execution framework, lets a participant react to emitted Ethereum

events and trigger own actions that resemble the receiving of message events. Instead

of having to invocate transactions manually to progress state, one is now able to check

if a wait state condition has resolved to continue process flow. This concept also

enables the usage of black-box participants, which only react to incoming and trigger

outgoing messages in the form of Ethereum events, that other process participants can

subscribe and react to. Waiting times for (human) process progression can be

minimized and transaction costs (for EVM operations performed such as state update)

are paid only by the executing participant for the state changes performed.

To enable this concept, the triggers (subscription topics) must be known by the

Subscription Service. We extract relevant message flows (event topics) directly from

the given BPMN collaboration diagram using a parser script and store the results in an

artifact repository of the executing participant. The Subscription Service takes this

parsed input as a NodeJS-based command line script. In order to extract events, the

subscription service must have access to an Ethereum full node storing the events.

The Subscription Service is an optional component. Each instance (per participant)

needs to hold a private key to sign transactions automatically for interactions with

other process participants.

To sum up, all previously described components, as well as their interactions with

other components following sections 3 and 4, are represented in the general

architectural overview (cf. Fig 4).

Fig 4. General architectural overview

https://doi.org/10.30844/wi_2020_i2-klinger

5 Evaluation

5.1 Cost Analysis

Currently, our main goal is to develop a working prototype to validate the design

and test the practicality of the execution framework implementation in a private

network. Accordingly, the prototype is not cost-optimized, i.e., bytes32 identifiers are

used to log performed activities that could be improved to save on incurred storage

costs. If cost-optimization is a major concern, all (wait) states can be encoded in

integer variables [26] at the expense of convenience and need for an additional

mapping construct to convert encodings when dealing with process event logs.

Cost calculations were performed in a local test network. Gas price is constant at

20 Gwei. To give a rough price estimation for execution in a public network, the price

of 1 ETH at the time of writing is assumed to be USD $230.

In the cost breakdown provided (cf. Table 1) contract deployment and run costs are

presented, including costs for one-time setups, e.g., to initialize allowance contract

addresses. Dynamic components except the CollaborationContract do not need any

extra setup after contract deployment. In those cases, only run costs are considered.

The costs of the adopted VotingContract is highest amongst all contracts. As the

VotingContract costs are incurred only once and since it can be used managing many

process collaborations, the costs are arguable. Nevertheless, the VotingContract

implementation needs to be optimized.

One can see that running the process collaboration without the Subscription

Service, costs are irregularly distributed among participants since triggering

participants would pay transaction costs for process handovers. Consequently, this

leads to unfair cost distribution in public networks but could be tolerated in a private

network. With the Subscription Service running, costs are fairly distributed amongst

participants in relation to the actions performed in their respective pools while overall

cost stays constant. Therefore, running the process in a public network would be

favorable with the Subscription Service regarding execution costs.

Table 1. Deployment, setup and run costs with or without Subscription Service running

Contract Deployment

Cost

Additional

Setup Cost

Run Cost per process instance

with(out) Subscription Service

Static (I) ETH USD ETH USD ETH USD ETH USD

VotingContract 0,06108 14,05 0,00243 0,56 - - - -

ManagingContract 0,01984 4,56 0,00127 0,29 - - - -

Dynamic (II) without with

SPP_Collab.Contract 0,01528 3,51 0,00215 0,49 - - - -

SPP_Customer 0,02304 5,30 - - 0,00206 0,47 0,00454 1,04

SPP_Headquarter 0,01424 3,28 - - 0,00633 1,46 0,00182 0,42

SPP_RegionalBranch 0,01915 4,40 - - 0,00373 0,86 0,00395 0,91

SPP_RepairCenter 0,01606 3,69 - - 0,00000 0,00 0,00182 0,42

Sum 0,16870 38,80 0,00586 1,35 0,01213 2,79 0,01213 2,79

https://doi.org/10.30844/wi_2020_i2-klinger

5.2 Limitations and Future Improvement Potential

Currently, our Transpiler component produces an executable state-machine Smart

Contract from the given BPMN collaboration. Yet, for some modeling constructs,

such as events, complex or event-based gateways, logic needs to be added manually

to the respective ParticipantContracts prior deployment. Other comparable execution

engines on the Ethereum Blockchain already cover a large part of the BPMN palette

[12]. This effort will be a follow-up step to enhance our proposed execution

framework and to be able to trigger fully automated contract deployments with only a

collaboration diagram given in the first place.

Currently, our framework is not focusing on data privacy aspects since we are

operating in a private network. Once a concept to deal with (personal and processual)

data in a public network is implemented, the framework can be ported to a public

environment. The implementation is portable to EVM-compatible Blockchain systems

like Hyperledger Burrow, Quorum or Parity with privacy features enabled.

In a public network, scalability issues may arise, e.g., due to high gas costs or as of

network capacity. Additional performance optimizations to reduce gas usage in the

logic contracts will improve the implementation in the next iteration.

Another future improvement to our approach is better support for upgradeability,

e.g., versioning and execution of versioned processes. This includes the introduction

of a proxy contract holding references to the current implementation contract.

5.3 Comparison to Related Work

Different proposals towards process execution or verification using a Blockchain

system exist. Authors of [9] use Bitcoin’s mechanisms to enforce and verify process

flow, removing the need for mutual trust in contractual relationships. Since Bitcoin’s

technical possibilities are limited [9], we consider Ethereum as an implementation

platform mainly due to its versatile Smart Contracting possibilities, development tool

availability and widespread adoption.

Other approaches propose domain-specific language constructs like DCR-graphs

[10] or Business Artifacts [27] as a starting point for Blockchain-based process

execution frameworks. Authors of [14] propose a lightweight execution framework

for cross-organizational process execution on Ethereum entirely on-chain.

Characteristic of the latter approach is the absence of a process model during contract

deployment, thus the process model will be defined after deployment during runtime

[14]. This is beneficiary for efficient scaling, yet in our opinion unsuitable for

changing processes creating the need for frequent, cost-intensive, contract

deployments.

Early efforts comparable to our framework already show that process descriptions

in the form of BPMN 2.0 files can be translated into a codified contractual

enforcement of the process flow in a Solidity Smart Contract which is able to manage

process state and orchestrate process execution on Ethereum while simultaneously

documenting performed process steps on-chain [11],[13]. Follow-up work focuses on

contract performance optimizations using Petri Nets during BPMN transpilation and

https://doi.org/10.30844/wi_2020_i2-klinger

other Solidity related performance measures like using bit vectors to reduce

execution- and storage costs [26]. As stated in section 5.2, our presented framework is

currently unoptimized and relies on Petri net verification enabled by external tools

prior to state machine generation and relies on the presented wait-state approach per

participant respectively pool.

Another model-driven engineering tool [19] and a food traceability system [28]

make use of the process execution approach originally proposed in [13] to manage

and track process state. A business process management system, called Caterpillar, is

initially proposed by [11]. According to Caterpillar’s first design principle, the

collaborative process in form of a BPMN collaboration diagram must be transformed

into an orchestration diagram where each participant is modeled as a swim lane and

handoffs between (external) participants are handled with a sequence flow passing

lanes like in an internal orchestration diagram rather than using messages as an

exchange mechanism [12]. This need for an extra conversion step from a cross-

organizational process diagram in the form of a collaboration to an intra-

organizational diagram in the form of a single-pool orchestration may confuse

stakeholders dealing with the process during execution. The referred design principle

stated by [12] contrasts our proposed execution framework, as the basis for our

proposed process engine is a collaboration diagram, that does not need to be

transformed to an orchestration diagram prior to compilation. We rely on existing

approaches by [20, 29, 30] to transform a process model to a state machine

representation.

Most recent work is also using Ethereum for execution of collaborative workflows

based on an extended BPMN standard for choreographies [31]. While their solution is

comparable to ours to the extent of process execution and verification, their

implementation lacks “provisions to evenly distribute costs between participants”

[31]. Contrasting, in our implementation, we may clearly separate cost at the pool

boundaries with the help of the Subscription Service. Also, our solution sticks to

established modeling standards to make use of the existing BPMN toolchain.

None of the related works is making use of a multi-signature voting mechanism

during deployment phase to distribute costs, but rather follow approaches, where one

central entity is responsible for process deployment.

7 Conclusion

Our proposal for a cross-organizational Blockchain-based process execution

framework solves integration and trust problems that commonly arise with many

participants that need to collaborate on a commonly defined workflow. The

framework provides process transparency to all process participants thus having the

potential to reduce costly lay times and quality improvements of strictly enforced

workflows. Also, the need for a trusted third party overlooking a process is

eliminated, through contract-based process execution. Contrasting other execution

frameworks, we take a BPMN collaboration diagram as basis for process

implementation. Static and dynamic framework components enable flexible

integration of contract-based collaborations during runtime.

https://doi.org/10.30844/wi_2020_i2-klinger

A transpiler is used to automatically generate Smart Contracts resembling the

process flow based on a BPMN collaboration diagram. A voting system ensures fair

distribution of deployment costs amongst participants. An optional Subscription

Service is presented, that may be used to reduce waiting times when executing the

process and fosters fair cost-attribution amongst the collaborators during runtime.

Another unique distinction of our framework is the support for collaborations in

which only a subset of participants needs to be covered ‘on-chain’ as Smart Contracts,

whilst others may remain ‘off-chain’ and communicate through events with the

process segments implemented as Smart Contracts. Thus, offering the possibility to

only treat certain participants or shared process segments on-chain and have other

participants defined as ‘black boxes’.

References

1. Hackius, N., Petersen, M.: Blockchain in logistics and supply chain. In: Proceedings of the
Hamburg International Conference of Logistics (HICL), pp. 3–18. epubli GmbH, Berlin
(2017)

2. Korpela, K., Hallikas, J., Dahlberg, T.: Digital Supply Chain Transformation toward
Blockchain Integration (2017)

3. Albrecht, S., Reichert, S., Schmid, J., Strüker, J., Neumann, D., Fridgen, G.: Dynamics of
Blockchain Implementation - A Case Study from the Energy Sector. In: Bui, T. (ed.)
Proceedings of the 51st Hawaii International Conference on System Sciences. Hawaii
International Conference on System Sciences (2018)

4. Ølnes, S., Jansen, A.: Blockchain technology as infrastructure in public sector. In: Janssen,
M., Chun, S.A., Weerakkody, V. (eds.) Proceedings of the 19th Annual International
Conference on Digital Government Research Governance in the Data Age - dgo '18, pp. 1–
10. ACM Press, New York, New York, USA (2018)

5. Fridgen, G., Radszuwill, S., Urbach, N., Utz, L.: Cross-Organizational Workflow
Management Using Blockchain Technology - Towards Applicability, Auditability, and
Automation (2018)

6. Mendling, J., Weber, I., van der Aalst, W., vom Brocke, J., Cabanillas, C., Daniel, F.,
Debois, S., Di Cicco, C., Dumas, M., Dustdar, S., et al.: Blockchains for Business Process
Management - Challenges and Opportunities. ACM Trans. Manage. Inf. Syst. 9, 1–16
(2018)

7. Xu, L., Liu, H., Wang, S., Wang, K.: Modelling and analysis techniques for cross-

organizational workflow systems. Syst. Res. 26, 367–389 (2009)
8. Hohpe, G., Woolf, B., Brown, K.: Enterprise integration patterns. Designing, building, and

deploying messaging solutions. Addison-Wesley, Boston, Mass. (2012)
9. Prybila, C., Schulte, S., Hochreiner, C., Weber, I.: Runtime verification for business

processes utilizing the Bitcoin blockchain. Future Generation Computer Systems (2017)
10. Madsen, M.F., Mikkel Gaub, Tróndur Høgnason, Kirkbro, M.E., Tijs Slaats, Søren Debois

(eds.): Collaboration among Adversaries: Distributed Workflow Execution on a
Blockchain (2018)

11. López-Pintado, O., García-Bañuelos, L., Dumas, M., Weber, I.: Caterpillar: A blockchain-

based business process management system. In: Robert Clarisó, Henrik Leopold, Jan
Mendling, Wil M. P. van der Aalst, Akhil Kumar, Brian T. Pentland, and Mathias Weske

https://doi.org/10.30844/wi_2020_i2-klinger

(ed.) Proceedings of the BPM Demo Track (BPM’17), 1920 (2017)
12. López-Pintado, O., García-Bañuelos, L., Dumas, M., Weber, I., Ponomarev, A.:

CATERPILLAR: A Business Process Execution Engine on the Ethereum Blockchain
(2018)

13. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: Untrusted
Business Process Monitoring and Execution Using Blockchain. In: La Rosa, M., Loos, P.,
Pastor, O. (eds.) Business Process Management, 9850, pp. 329–347. Springer International
Publishing, Cham (2016)

14. Sturm, C., Szalanczi, J., Schönig, S., Jablonski, S.: A Lean Architecture for Blockchain
Based Decentralized Process Execution. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.)
Business Process Management Workshops, 342, pp. 361–373. Springer International
Publishing, Cham (2019)

15. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System,
https://bitcoin.org/bitcoin.pdf

16. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and
cryptocurrency technologies. A comprehensive introduction. Princeton University Press,
Princeton (2016)

17. Wood, G.: Ethereum: A secure decentralized generalised transaction ledger. Byzantinum
Version, https://ethereum.github.io/yellowpaper/paper.pdf

18. Zhang, P., White, J., Schmidt, D.C., Lenz, G.: Design of blockchain-based apps using
familiar software patterns with a healthcare focus. In: Proceedings of the 24th Conference
on Pattern Languages of Programs, pp. 1–14. The Hillside Group, USA (2017)

19. Tran, B. an, Lu, Q., Weber, I.: Lorikeet: A Model-Driven Engineering Tool for Blockchain-

Based Business Process Execution and Asset Management. In: Wil M. P. van der Aalst,
Casati, F., Conforti, R., Leoni, M.d., Dumas, M., Kumar, A., Mendling, J., Nepal, S.,
Pentland, B.T., Weber, B. (eds.) Business Process Management 2018, pp. 56–60 (2018)

20. Wöhrer, M., Zdun, U.: Design Patterns for Smart Contracts in the Ethereum Ecosystem. In:
2018 IEEE International Conference on Blockchain (2018)

21. Klinkmüller, C., Ponomarev, A., Tran, A.B., Weber, I., van der Aalst, W.: Mining
Blockchain Processes: Extracting Process Mining Data from Blockchain Applications. In:
Di Ciccio, C., Gabryelczyk, R., García-Bañuelos, L., Hernaus, T., Hull, R., Indihar
Štemberger, M., Kő, A., Staples, M. (eds.) Business Process Management 2019, 361, pp.
71–86. Springer International Publishing, Cham (2019)

22. Mühlberger, Roman, Stefan Bachhofner, Claudio Di Ciccio, Luciano García-Bañuelos, and
Orlenys: Extracting Event Logs for Process Mining from Data Stored on the Blockchain.
In: Second Workshop on Security and Privacy-enhanced Business Process Management
(SPBP), BPM Workshops. Vienna, Austria (2019)

23. Decentralized Autonomous Organization. How to build a democracy on the blockchain,
https://www.ethereum.org/dao

24. Xu, X., Pautasso, C., Zhu, L., Lu, Q., Weber, I.: A Pattern Collection for Blockchain-based
Applications. In: ACM (ed.) Proceedings of the 23rd European Conference on Pattern
Languages of Programs - EuroPLoP '18, pp. 1–20. ACM Press, New York, New York, USA
(2018)

25. Camunda: Transactions in Processes. Wait States,
https://docs.camunda.org/manual/7.5/user-guide/process-engine/transactions-in-

processes/#wait-states

26. García-Bañuelos, L., Ponomarev, A., Dumas, M., Weber, I.: Optimized Execution of

https://doi.org/10.30844/wi_2020_i2-klinger

Business Processes on Blockchain. In: Carmona, J., Engels, G., Kumar, A. (eds.) Business
Process Management, 10445, pp. 130–146. Springer International Publishing, Cham
(2017)

27. Hull, R., Batra, V.S., Chen, Y.-M., Deutsch, A., Heath III, F.F.T., Vianu, V.: Towards a
Shared Ledger Business Collaboration Language Based on Data-Aware Processes. In:
Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) Service-Oriented Computing, 9936, pp.
18–36. Springer International Publishing, Cham (2016)

28. Lu, Q., Xu, X.: Adaptable Blockchain-Based Systems: A Case Study for Product
Traceability. IEEE Softw. 34, 21–27 (2017)

29. Mavridou, A., Laszka, A.: Designing Secure Ethereum Smart Contracts: A Finite State
Machine Based Approach. FC 2018 10957, 523–540

30. Xu, X., Weber, I., Staples, M.: Architecture for Blockchain Applications. Springer
International Publishing, Cham (2019)

31. Ladleif, J., Weske, M., Weber, I.: Modeling and Enforcing Blockchain-Based
Choreographies. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.)
Business Process Management, 11675, pp. 69–85. Springer International Publishing, Cham
(2019)

https://doi.org/10.30844/wi_2020_i2-klinger

	1 Motivation and Problem
	2 Background
	3 Conceptual Design
	3.1 Design Decisions
	3.2 Execution Framework Contract Design

	4 Prototype
	4.1 Use Case
	4.2 Contract Interaction and State Management
	4.3 Event Logging and Event Subscription Service

	5 Evaluation
	5.1 Cost Analysis
	5.2 Limitations and Future Improvement Potential
	5.3 Comparison to Related Work

	7 Conclusion
	References

