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Abstract: MAN Energy Solutions, one of the largest ship engine manufacturers 

in the world, is looking into further improving its hit rate of through-life 

engineering services and spare parts quotations. We help to solve this relevant 

field problem by building a novel machine learning based sales win-propensity 

prediction system that utilizes the lightGBM algorithm, SHapley Additive 

exPlanations, and a second layer conditional probability model of quotation 

age. Moreover, we build an implementation method for the broader class of 

such systems and extend the scientific literature on explainable machine 

learning by abductively developing and instantiating the design principles (DPs) 

of local contrastive explainability, global explainability, selective visualization, 

causality, confirmatory nudging, and accountability in a sales win-propensity 

system. 
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1 Introduction 

In the last years, shipbuilders and original equipment manufacturers (OEM) in the 

maritime industry have suffered from a significant drop in the demand for new-

building of vessels and engines [1]. An ongoing oversupply of tankers and 

containerships in the market caused this drop. OEMs are especially challenged to 

rethink their traditional business models and to shift the focus in product lifecycle 

management from the product development phase (beginning-of-life) to the product 

usage phase (middle-of-life). In the approximately 15-20 years lasting usage phase of 

main engines, OEMs can generate earnings via spare parts sales and through-life 

engineering services (TES), such as maintenance, repair, and overhaul. For OEMs, 

the product usage phase of their installed equipment determines the aftersales market.   

In this context, MAN Energy Solutions, one of the largest ship engine 

manufacturers in the world with high market shares in the tanker and container vessel 

segments and approximately 15.000 employees in over 100 destinations around the 
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world, is looking into further improving its hit rate
1
 of through-life engineering 

services and spare parts quotations. Following the dual mission of IS, we help to solve 

this relevant field problem by building a novel sales quotation win-propensity
2
 

prediction system, while extending the scientific literature [2] on explainable machine 

learning by abductively developing design principles (DPs) based on a sound 

literature review and an authentic and concurrent evaluation of the action design 

research (ADR) process [3].  

Win-propensity estimation is an important aspect of assessing overall sales 

performance [4]. Despite its importance, research on sales win-propensity estimation 

models is scarce [5]. In large firms such as MAN Energy Solutions, sales 

professionals sometimes have to deal with many open sales opportunities and 

quotations. To structure their work and to enable an approximate forecast of the win-

propensity, sales professionals use CRM systems that enable them to assign win-

propensity scores or hot-warm-cold labels manually as an outcome of an often more 

or less subjective judgment [6]. Such subjective judgments are prone to cognitive 

biases [7], such as being overly confident and thus estimating too high win-propensity 

scores [8]. Moreover, they can be biased due to organizational structures, politics, and 

socio-cultural phenomena, for example, when the management expects a positive 

forecast for the current sales pipeline [9]. Data-driven sales win-propensity estimation 

methods, on the other hand, can support resource management [10], increase 

efficiency, and generate explanatory insights about the sales process and its drivers 

[11]. 

Overall, in this paper, we make four scientific contributions. First, we push the 

state-of-the-art in sales propensity modeling by developing an approach combining 

ensemble machine learning techniques (esp. lightGBM) to robustly model non-linear 

relationships and interaction effects with a conditional probability model accounting 

for quotation age (Sections 4.1 and 4.2). Second, we demonstrate how methods for the 

human-interpretable explanation of black-box machine learning models (esp. SHapley 

Additive exPlanations) can be applied to improve the acceptance of predictions by 

users and managers, and how they help data scientists to improve model quality 

(Section 4.3). Third, we go beyond the pragmatic design of a single prototype and 

propose a method for the organizational implementation of the proposed approach in 

complex real-life settings (Section 4.4). Fourth, we formalize the learnings from this 

1.5 years lasting action design research project as design principles for explainable 

aftersales win-propensity prediction systems (Section 5).  

2 Explainable Machine Learning 

Machine learning and data science have the ultimate goal of supporting decision 

making. Common sense tells us that one should only implement good decisions. But 

what are good decisions? Sharma et al. [12] present two characteristics of good 

decisions: quality and acceptance. The quality criterion is concerned with whether a 

                                                           
1 At MAN hit rate is essentially calculated as orders euro / quotations euro (ex-post) 
2 Win-propensity is the hit rate expressed as a probability for a particular quotation (ex-ante) 
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decision is able to reach its stated goals. The other criterion refers to whether a 

decision is accepted by its stakeholders, especially those responsible for successfully 

implementing it [13–15]. Hollander et al. [14] argue that how much stakeholders 

participate in the decision making process and, thus, influence the final decision, 

significantly impacts its acceptance and the chances of successful implementation. 

Also, Kayande et al. [16] suggest that a lack of understanding of a machine 

learning model can lead to a refusal of acceptance and, consequently, usage by end-

users, despite the fact that the model might improve decision quality. They further 

elaborate on this idea by proposing a three-gap framework that conceptualizes how 

human-interpretable explanations can be used to improve the acceptance and 

performance of decision support systems (DSS). In particular, they relate three 

different concepts, namely, the manager´s mental model, the DSS, and the true model 

(reality) via three distinct bi-directional gaps. The first gap, between the manager´s 

mental model and the DSS, can lead to reduced model acceptance when widened and 

improved model acceptance when narrowed. The second gap, between the DSS and 

the true model (reality), affects the performance of a DSS negatively when widened 

and positively when narrowed. The third gap, between the manager´s mental model 

and the true model (reality), affects the manager´s decision making performance 

negatively when widened and positively when narrowed.  

Gregor and Benbasat [17] give arguments for why users need explanations when 

working with intelligent systems such as machine learning systems, namely, to solve 

specific problems by using the system, to learn from the system and its outputs, and to 

understand why anomalies have come to be. Moreover, they argue that explanations 

can lead to an improvement in terms of performance, learning, and the overall 

perception of a system. However, they also note that in order to enable such 

improvements, explanations should be context-specific rather than too generic and 

should not demand too much effort from users and, thus, if possible, be automated. 

Finally, they stress the importance of justificatory knowledge, which can lead to a 

deeper understanding by grounding, for instance, a prediction in sound causal theory.  

Martens and Provost [18] have extended both the work of Kayande et al. and 

Gregor and Benbasat. They criticize the three-gap framework of Kayande et al. 

because it assumes that DSS are always superior to a manager’s mental model in 

terms of decision quality (alignment with reality). Instead, they argue that DSS can be 

wrong too, for example, because of biases introduced during the model building 

process or overfitting a model to training data. In consequence, they extend the three-

gap framework by adding a feedback loop for situations in which a manager´s mental 

model is closer to the true model (reality) than the DSS. The objective of this 

feedback loop is to improve the DSS by bringing it closer to the manager´s mental 

model. Moreover, they add the three different roles of developers, managers, and 

customers to aid understanding of how the explanatory needs of the roles differ. 

Furthermore, Martens and Provost [18] extend the above-outlined arguments of  

Gregor and Benbasat by distinguishing between (1) explanations that lead to 

improved system acceptance by supporting the user in getting a causal understanding 

of the general real-world mechanisms that the system builds upon and (2) 

explanations that lead to improved acceptance by supporting the user in understanding 
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how the particular system works. They further subdivide explanations of type (2) into 

(a) global explanations of how the overall model behaves and (b) local explanations 

of how it behaved in a particular instance. Such types of explanations, they argue, can 

lead to improved acceptance but also an improved model, which, again, can improve 

model acceptance but also aid in making sense of the model´s underlying causal 

mechanisms (reality). 

3 Methodology 

We followed an action design research (ADR) process inspired by Sein et al. [3], in 

which we started by analyzing and formulating the field problem of aftersales hit rate 

improvement at MAN Energy Solutions. Next, we designed initial artifacts of the 

class of explainable win-propensity prediction systems. Throughout many iterations 

of building, intervention, and evaluation, the artifacts were further shaped and refined 

by the design team, but also by the specific context of the maritime industry, until 

they reached their current state. Finally, we formalized abstracted learnings as design 

principles for explainable win-propensity prediction systems. During the whole 

process, we collected rich empirical data in the form of observation notes of our 

encounters at MAN Energy Solutions (see Table 1 for an overview). To collect the 

data, we used a form of design ethnography [19], in which one does not only study 

others and their behavior, but also oneself and one's artifacts, and how they interact as 

interventions with their environment.  

 

Table 1: Project-related encounters at MAN Energy Solutions 

Meeting Type Participants # h Total (h) 

Development 

Meeting 

Business Analyst, Junior Data Analyst, 

Data Management Specialist, Researcher 

20 2 40 

Stakeholder 

Presentation 

Business Analyst, Department Manager, 

Sen. Strategy Manager, Strategy 

Manager, Researcher, Pricing Analyst 

4 1 4 

Sprints Researcher, Business Analyst 18 4 72 

4 An Explainable After-Sales Win-Propensity Prediction 

System  

At MAN Energy Solutions, we built a system for win-propensity scoring that is 

integrated into the existing IT infrastructure (see Figure 1). In the spirit of ADR, this 

system constitutes the main practical contribution of our work. The core of the system 

is a lightGBM model [20] that produces base win-propensity probabilities for sales 

quotations and a second-level conditional probability model that accounts for the 

decaying effect of quotation age on the base win-propensity probabilities. Moreover, 
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we train a separate explanatory SHAP (Shapley Additive exPlanations) model to open 

up the lightGBM black-box model by generating human-interpretable explanations of 

global and local (individual predictions) feature importance [21]. The model training 

part of the system executes over the weekend, while the prediction part of the system 

executes daily. Both parts work fully automated. 

 

 

Figure 1. Implemented back-end process 

4.1 lightGBM-based Win-Propensity Prediction Model  

lightGBM [20] is an advanced implementation of the boosting algorithm [22] that 

utilizes gradient-based one-side sampling (GOSS) and exclusive feature bundling 

(EFB). GOSS excludes instances with small gradients (residuals) from the data and 

focusses on instances with larger gradients to compute information gain. By this, 

lightGBM is faster than other implementations of boosting. With EFB, lightGBM can 

further improve performance by reducing the number of features via bundling 

variables that are mutually exclusive together. We chose lightGBM mostly due to its 

performance properties. In our case, the lightGBM algorithm was by far the most 

efficient tree ensemble method when trained on our data of up to 3 million records of 

quote positions and 15 carefully selected features (see Table 2). Through cross-

validation, we get an average accuracy of 76% and an AUC (area under the receiver 

operator curve) of 0.74; meaning that there is a chance of 74% that the model can 

successfully distinguish between a randomly selected won quotation and a randomly 

selected lost quotation. Compared to a model with no separability power (AUC of 

0.5), our model provides a lift of 24%. Furthermore, as the model calculates win-

propensity probabilities with an average Brier score of 0.20 and not just binary labels, 

its outputs can be used by sales professionals directly to evaluate and prioritize sales 

quotations. 

Table 2: Example of features used in the model 

Feature 

 

Equip. in Plant 

(id) 

Material  

(id) 

Discount 

(percent) 

List Price 

(euro) 

Processing 

Time (days) 

Encoding 
Mean Mean Numeric Numeric Numeric 
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4.2 Second-level Conditional Probability Model for Quotation Age 

During the implementation of the system, we faced the challenge of incorporating the 

time-dependent decay of win-propensity probabilities into the lightGBM model (in 

other words: the older a quotation gets, the less likely it is that it will be transformed 

into an order). The technical problem was that for all non-hit training records (i.e., 

rejected quotations that were never transformed into orders), we lack the reference 

(order date) to calculate the difference in days between quotation creation and order 

date.  

To overcome this challenge, we developed a two-layer modeling approach. The 

first step in this approach is to estimate the probability density function (PDF) of the 

win-propensity score for quotation age. For this, we only use the subset of won-

quotations that have an order date. We first calculate the difference between quotation 

creation and order date (quotation age) and then calculate the frequency of won-

quotations and group them by quotation age. As we have access to a large amount of 

data and quotation age is a continuous random variable, we chose to estimate the PDF 

via a histogram, which as a non-parametric estimation method is suitable in this case 

[23]. From the PDF, we can draw probabilities for each quotation age. Eventually, we 

calculate the time-decayed win-propensity as a conditional probability and integrate it 

into the user interface (Equation 1 and Figure 2):   

 𝑃(𝑃𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 | 𝐴𝑔𝑒)  =  𝑃(𝑃𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑛𝑑 𝐴𝑔𝑒)𝑃(𝑃𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦)  (1) 

 

Figure 2. Quotation view of win-propensity prediction (HR pred) and time-adjusted prediction 

(blurred for confidentiality reasons) 

4.3 SHAP Model 

SHAP [21] is grounded in the game-theoretical concept of Shapley values. If one 

imagines that players are collaborating in a team (coalition) to win a game, then 

Shapley values are the marginal contribution of a player´s performance to the overall 

success of the team. Based on Shapley values, all players could be paid fairly by their 

clubs according to their contribution to winning the game. 

Machine learning researchers adapted this idea and developed algorithms for local-

level machine learning model explanations (per prediction) [21, 24–27]. The idea here 

is that the prediction, in our case predicting win-propensity, is the game, and the 

feature values are the players. Thus, if we can calculate the marginal contribution of 

each feature value, we have a consistent method of feature importance that is superior 
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to standard feature importance methods such as gain (in terms of Gini index) or 

splitcount. Moreover, compared to the local interpretable model-agnostic explanations 

algorithm (LIME) [28, 29],  SHAP is more interpretable, since its explanation values 

add up to the model output. Also, SHAP-based global feature importance allows 

visualizing non-monotonic relationships (bi-directional; see Figures 3 and 4).  

 

Figure 3. Local instance-level SHAP explanation (blurred for confidentiality reasons) 

 

Figure 4. Explanations showing both magnitudes (X-axis) and non-monotonic value impact 

(color code; the figure is blurred for confidentiality reasons) 

4.4 Implementation Method 

Next to the core system consisting of back-end and user interface, we designed an 

implementation method for our system that was, despite its initial theoretical 

grounding, developed abductively based on the learnings of the different ADR 

building, intervention, and evaluation cycles (see Figure 4). One notable highlight of 

the method is the utilization of domain knowledge to develop hypotheses of drivers of 
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hit rate that, in the following, are tested via SHAP in an explanatory analysis. 

Furthermore, we add steps of regular stakeholder presentations as well as the 

utilization of UI mockups for those presentations. Also, we distinguish between 

model building and evaluation in experimental lab situations and in a more 

naturalistic production environment, which, in our experience from the case, can give 

different results and, therefore, valuable insights into the modeling and 

implementation process. Moreover, we added steps of deployment in production UI, 

change management, and live monitoring to account for the fact that the data 

generating processes that our models rely on may change. 

 

 

Figure 5. Implementation method 

5 Design Principles 

The following design principles abstract from the concrete artifacts described in 

Section 4 and capture general prescriptive knowledge that should enable others to 

build explainable machine learning systems, in particular, win-propensity prediction 

systems. In the spirit of ADR, these design principles constitute the main scientific 

contribution of our work. 

5.1 Local-contrastive Explainability: Present model explanations to users on 

an instance-level to support contrastive explanation processes 

Due to the complexity of the aftersales market in the shipbuilding industry and its 

industry-specific challenges, such as intransparent owner structures, bulk orders, and 

product heterogeneity, sales professionals at MAN rely on implicit domain knowledge 

and collaborate closely with other domain experts (e.g., engineers). Not surprisingly, 

we found that these sales professionals often do not trust the predictions of a machine 

learning model. While the sales professionals are not necessarily interested in fully 

understanding how the machine learning model has generated a score, they still want 

to know why the model predicts a specific win-propensity score for a specific 

quotation. They may ask: “Why has quotation X a win-propensity score of 0.9 and not 

0.2?” According to Lipton [30] and Miller [31], answering such why-questions 

requires the explainee to contrast the observed event (score of 0.9) with an imagined 

counterfactual event (score of 0.2) to abductively infer the most plausible explanation 
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of the observed event (score of 0.9) [32]. We support this cognitive process of 

abductive reasoning by displaying Shapley values alongside main variables such as 

discount % or material in our user interface (Figure 3). In the abduction process, the 

Shapley and variable values function as candidate hypotheses of causes for the 

observed event (score of 0.9), which users can compare with their mental model to 

assess their plausibility and eventually answer the contrastive question: “Why has 

quotation X a win-propensity score of 0.9 and not 0.2?” 

5.2 Selective Visualization: For local explanations, visualize only the top 

contributing features to reduce explanation complexity  

Our front-end shows a report of open quotations along with the predicted win-

propensity scores and a time-decayed version of it that accounts for quotation age. 

This report already contains much information, and processing it puts a high cognitive 

load on users. Hence, we decided to not increase the information processing load 

further with our explanations. Instead, we wanted to limit the complexity of our 

instance-level explanations by providing on-demand visualizations of only the top-5 

most important positive and negative features.  

This empirically motivated design decision can be backed up with psychological 

theory. Psychological research suggests that human short-term memory can only 

recall 4-7 chunks of information at a time [33, 34]. A chunk is the largest unit of 

information that human memory can represent. How the human brain creates these 

chunks depends on its prior knowledge. When confronted with familiar concepts, our 

brain can create larger chunks, and therefore, recall more information. Visualization 

supports this cognitive chunking process by grouping (or pre-chunking) information 

into symbolic representations so that one can display much larger amounts of 

information that otherwise could not have been recalled simultaneously  [35]. 

5.3 Accountability: Schedule regular management presentations to increase 

data scientists´ need for justification  

In our implementation method (Figure 5), we propose repeated stakeholder 

presentations to create and sustain organizational support. Committing to those 

presentations comes with the side effect of having to justify one´s approach and 

progress to the stakeholders. As a result, one can be made accountable for what one 

has done between the meetings.  

Research from the field of psychology suggests that accountability, the need for 

justification of one´s viewpoints towards other people, lets decision-makers judge in 

more complex ways, rely less on prior beliefs, and be more evidence-based (and 

supposedly more data-driven). By this, accountability affects decision making in a 

debiasing way [36–38]. For a developer (data scientist) that follows our method, this 

self-created accountability increases the need to understand how its machine learning 

model works. Thus, it motivates developers to align the gap between their mental 

model and the machine learning model [18], which eventually can lead to improved 
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model quality. Moreover, having a solid understanding of a machine learning model 

is a pre-requisite for explaining it to others in a simple, but not simplistic, way.  

5.4 Global Explainability: Explain the machine learning model to managers 

on a global level to increase acceptance, enable process accountability, and 

share outcome accountability 

In our implementation method, we included a step of explanatory analysis/hypothesis 

testing, based on our experience that managers became much more engaged, 

contributed with domain knowledge, and seemed to be more positive towards the 

project, once we presented the results of our explanatory analysis. We presented not 

only findings concerning the drivers of hit rate but also how the different feature 

values on average affect the prediction of the model (global explanations).  

While there is, as mentioned above, research that indicates a positive impact of 

accountability on decision making, there is also research suggesting negative forms of 

impact for some types of accountability [38, 39]. In particular, Simonson and Staw 

[38] suggest that outcome accountability triggers a mechanism by which accountable 

persons perceive an increased need to self-justify past behavior and decisions, which, 

in turn, leads to an escalation of commitment to such behaviors. Process 

accountability, on the other hand, leads to a more thorough alternative evaluation in 

decision making, but also a decrease of the need to self-justify past behavior, since 

one can justify behavior via a thoroughly evaluated and transparently reported process 

instead of exploiting or defending an eventual outcome only.  

Based on our experience from the case, we argue that in machine learning projects, 

it is difficult for managers to comprehend the complex processes and mechanisms that 

underly a system. In reaction to this, managers may tend to make developers (data 

scientists) outcome accountable. However, when faced with a task such as 

implementing a novel machine learning system, where the outcome uncertainty is 

high, outcome accountability increases the stress-level of data scientists (see [40]). 

The reason for this is that in high outcome-uncertainty situations, it is particularly 

challenging for evaluators to assess the effort-outcome relation so that even when data 

science teams deliver high-quality work, the project can fail due to factors that are out 

of their control. In such situations, process accountability may be preferable to relieve 

some of the stress related to the low effort-outcome reliability [41] and its negative 

consequences [40].  

Nevertheless, it is hard to evaluate the quality of a process if it is not explainable. 

We experienced that presenting global explainability methods such as average SHAP 

feature importance (Figure 4) to managers, helps them to align their mental model 

with the machine learning model and the mental model of the data scientist. It allows 

evaluating whether a course of action (process) chosen by the developer makes sense 

or not, which eventually enables managers to make data scientists process 

accountable and, consequently, share the outcome accountability of machine learning 

projects and systems. 
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5.5 Confirmatory Nudging: Use language and representation devices that 

align well with users´ and managers´ mental models to increase 

acceptance of the machine learning model 

In our system, we made sure that we use a vocabulary (esp. feature names) that is 

familiar to the stakeholders from the maritime industry, such as motor manager 

(customer), or equipment_in_plant (engine installed on a vessel) instead of non-

speaking feature names such as x1, x2, x3 or features names that are uncommon in the 

given company and industry. Using such names when explaining the machine 

learning model helps to narrow the gap between a stakeholder´s mental model and the 

machine learning model, which, in turn, should increase its acceptance. Moreover, we 

made sure to present a working prototype early on (Figures 2, 3, and 4) by integrating 

the machine learning scrips and models into the existing infrastructure, which enabled 

us to demonstrate the model in an already familiar user interface.  

Confirmation bias [42] describes a tendency to favor information that aligns well 

with one´s prior beliefs (mental model). By adding domain-specific traits to the 

system, we exploit this cognitive bias to influence the behavior of users and managers 

in a predictable positive way (nudging) [43]. 

5.6 Causality: Choose the machine learning model that aligns best with reality 

and design it as if it was an explanatory rather than a predictive model to 

increase model acceptance by users, managers, and developers 

Shmueli [44, p. 293] discusses the differences between explanatory and predictive 

modeling, amongst others, based on the following two characteristics. (1) Causation-

association: “In explanatory modeling f represents an underlying causal function, and 

X is assumed to cause Y. In predictive modeling f captures the association between X 

and Y”. (2) Theory-data: “In explanatory modeling, f is carefully constructed based on 

F in a fashion that supports interpreting the estimated relationship between X and Y 

and testing the causal hypotheses. In predictive modeling, f is often constructed from 

the data”. In our implementation method, we incorporated a step of reaching out to 

the business in order to develop hypotheses (low-level theory) of how the features 

relate to the target. In the next step, explanatory analysis, we are testing those 

hypotheses with accessible data. So instead of looking for associations only, a typical 

approach when the objective is mostly predictive, we start with developing a causal 

theory of how the features relate to the target variable, which is common when the 

objective is explanatory.   

A more technical distinction between explanatory and predictive modeling 

objectives is the treatment of multicollinearity [43, p. 288]: “Multicollinearity is not a 

problem unless either (i) the individual regression coefficients are of interest, or (ii) 

attempts are made to isolate the contribution of one explanatory variable to Y, without 

the influence of the other explanatory variables. Multicollinearity will not affect the 

ability of the model to predict.” Also, SHAP (Figures 3 and 4) assumes independent 

features [21]. A violation of this assumption can bias the Shapley values for 

dependent (multi-collinear) variables since the algorithm cannot attribute the 
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distinctive contribution of each feature to the prediction. In reaction to that, we treat 

multicollinearity like one would do when having purely explanatory objectives. First, 

we identify collinearity via correlation matrices and multicollinearity via variance 

inflation factor (VIF) analysis. Based on this and the developed causal model, we 

remove the collinear variables or merge them.  

To summarize, we are designing the model to achieve both predictive and 

explanatory objectives. In our case, this comes with the benefit of increased 

explainability, while keeping the loss in predictive power neglectable.  

6 Discussion and Conclusions 

In this paper, we presented an explainable two-level win-propensity prediction system 

that utilizes the lightGBM algorithm (4.1), a conditional probability model for 

quotation age (4.2), SHAP explanations on both local and global levels (4.3), an 

interactive user interface (4.3), an implementation method (4.4), and abductively 

developed design principles (5). 

To the best of our knowledge, our work is the only one that provides an 

implementation method and derives design principles based on learnings from 

designing and implementing a novel sales win-propensity prediction system in a real-

world environment. Also, there is no other sales win-propensity approach for 

predicting the probability of converting a sales quotation into a sales order (hitting). 

Moreover, there is no specific machine learning approach for sales predictions in the 

maritime manufacturing industry. 

Nevertheless, there are some approaches for predicting the win-propensity of sales 

leads or opportunities, which is a comparable sales conversion process that, however, 

happens earlier in the sales funnel. In this domain, researchers from IBM developed 

with OnTARGET a logistic regression model that predicts the propensity of 

customers to buy IBM´s products [46]. Zan et al. [47] applied a neural network-based 

approach. Yan et al. propose a win-propensity approach based on modeling the 

interaction of users with the sales support system as Hawkes Processes [9]. Duncan 

and Elkan propose a pure probabilistic model [48]. Compared with these approaches, 

our approach is theoretically either superior in terms of predictive or explanatory 

power, and always superior in balancing predictive and explanatory power.  

The approach by Bohanec et al. [8, 11, 49] and Eitle and Buxmann [50] are the 

only other approaches that come close in terms of theoretical predictive and 

theoretical explanatory power. They utilize with random forest and gradient boosting 

machines some of the empirically proven best-performing prediction algorithms, that, 

however, are more resource-intensive when compared to lightGBM. Furthermore, 

they do not address the issue of time-decay in win-propensity scores that we approach 

with our second layer conditional probability model. Also, the explanation methods 

IME and EXPLAIN [55, 56] used by Bohanec et al. and LIME [28] used by Eitle and 

Buxmann do not fulfill the criterion of explanation accuracy that SHAP fulfills [21]. 

None of the approaches explicitly deals with multi-collinearity, which potentially 

makes their approaches less aligned with reality, and due to this less suitable to align 
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well with the mental models of users, managers, and also their own mental models, 

which in turn can lead to decreased trust, low acceptance, and low model quality (see 

[16, 18]).  

We build our approach during a 1.5 years lasting ADR project at MAN Energy 

Solutions. It means that the final shape of the system, the implementation method, and 

the design principles are not necessarily generalizable to other environments. 

However, they should be transferable to similar environments that are concerned with 

similar problems. While our system (Section 4) deals with challenges that should be 

transferable to many other B2B environments, our design principles are even further 

abstracted to the class of explainable machine learning, which should be transferable 

even to B2C environments.  

In the future, we want to study further how the system, with its explanatory 

capabilities, affects the acceptance by both users and managers. Moreover, we want to 

compare the accuracy of the win-propensity predictions generated by the system with 

those generated by users. Furthermore, we plan to integrate the aggregated win-

propensity predictions for a current sales pipeline as an operations-level forecast into 

a more general strategic forecasting algorithm.  
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