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Abstract. There is a large gap between domain experts capable to identify 

business needs and data scientists who use insight producing algorithms, but 

often fail to connect these to the bigger picture. A major challenge for 

companies and organizations is to integrate practical data science into existing 

teams and workflows. We are driven by the assumption that efficient data 

science requires cross-disciplinary teams able to communicate. We present a 

methodology that enables domain experts and data scientists to analyze and 

discuss findings and implications together. Motivated by a typical problem from 

auditing we introduce a visualization method that helps to detect unusual data in 

a subset and highlights potential areas for investigation. The method is a first 

aid kit applicable regardless whether unusual samples were detected by manual 

selection of domain experts or by algorithms applied by data scientists. An 

applicability check shows how the visualizations facilitate collaboration of both 

parties. 

Keywords: Commonality Plots, Domain Knowledge, Hybrid Intelligence, 

Visualization, Data Science 

1 Introduction and Motivation 

Referring to the term data science the spotlight is usually put on the application of 

state of the art models, machine learning algorithms, on how to tune the algorithms’
hyperparameters and on how to optimize scalability and overall performance. Those 

are all very important aspects in the world of data analytics. However, especially in 

the context of business intelligence and the overall creation of value there is large 

potential for information systems researchers and practitioners in the field of data 

science besides the optimization of algorithms, see [1-2] for an overview. Efficient 

data science requires a skillset that covers the range from the engineering side (data 

capturing and processing) to the business side (domain expertise and storytelling) and 

it comes to no surprise that individuals with such cross-disciplinary skillsets are rare 

[3]. Because of that shortage, the biggest challenge is to figure out how to efficiently 
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integrate practical data science into existing teams, workflows and processes. We are 

guided by the research question of how to improve the communication and 

collaboration between data scientists (engineering side) and domain experts (business 

side). As this question is broad, we approach it bottom-up with a specific problem 

motivated from the audit domain, namely the identification and assessment of unusual 

items. We introduce a visualization method (commonality plots) that supports the 

interpretation of unusual items, regardless of how these items have been identified in 

the first place. For the applicability check we use a structured dataset provided for 

auditing purposes to show how commonality plots can facilitate the dialogue of data 

scientists and auditors. However, our objective is to provide a method that is not 

restricted to auditing, but can be applied to many domains where structured data is 

available for investigation. In the end, every result of a pattern recognition algorithm 

will be some kind of subset of an overall population. We therefore argue that a 

visualization method capable of examining samples from structured datasets is 

suitable for adaption to other domains without undue effort. 

The next section contains a detailed description of the problem statement as well as 

its localization in a stylized process. Section 3 contains the theoretical background 

with definitions for commonality and the likelihood of occurrence of commonality. 

Section 4 contains the applicability check that demonstrates how to visualize and 

interpret the commonality measures. In Section 5 we discuss results of our approach 

and outline potential areas for further research; Section 6 concludes. 

2 Problem Definition 

There is a large body of literature on how the quality of an audit is critically 

dependent on the auditors’ judgment and the related derivation of conclusions 

regarding the financial statements of companies and organizations [4]. Accordingly, 

audit efficiency highly depends on the auditors’ competency “in recognizing patterns 

in financial data and in hypothesizing likely causes of those patterns to serve as a 

guide for further testing” and investigation [5]. In the light of unprecedented 

computational power and the transformational nature of advanced technologies and 

analytics in general the auditing sector is facing a change in paradigms [6]. It has 

become ever more challenging to gain insight from the vast volumes of structured and 

unstructured data available in order to assure a high quality audit not only based on 

samples but on entire company transactions. Thus, the accounting companies have 

“invested heavily in technological innovation” and personnel [7]. In order to unlock 

the investments’ potential, a common level of communication needs to be established 

for the experienced auditors and the new wave of tech-savvy employees. This is a 

major challenge not only for the auditing and accounting sector. It can be generalized 

in terms of how to successfully integrate practical data science and methodologies 

into the common working world. This makes the overall facilitation of 

communication and collaboration between domain experts and data scientists a highly 

relevant field for information systems research [8]. 
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Figure 1 lists typical tasks to be performed by an auditor from a data perspective. 

The idea is to lay out the general process without any links to specific audit 

procedures that obscure the broader picture with too much detail.  

 

Figure 1. Stylized Data-Driven Audit Process 

Following [9-10] the general process of extracting insights from data can be broken 

down into two main sub-processes: data management (acquisition, validation and 

enrichment) and data analytics (analyses and interpretation). We suggest to split the 

data management part into input data and data processing as both can account for 

months of work on their own. Plus, for auditing purposes, the process needs to be 

extended to account for documentation, often the most important part as a proper 

audit is completely relying on audit evidence. In general, the skillset of a data scientist 

“should be interdisciplinary and cover critical analytical and IT skills, business and 

domain knowledge, and communication skills required in a complex data-centric 

business environment” [2]. While such a skillset is certainly beneficial for each step 

of the process outlined in Figure 1, our method focuses on its rear part. We assume 

that data acquisition, validation, feature engineering and recalculation have all been 

finished so that our starting point is a perfectly preprocessed dataset. Additionally, 

let’s assume that we already have identified a number of samples that potentially 

contain unusual items. At this point, we are left with questions like the following: 

 Do the items in the sample have something in common that is not directly 

apparent? 

 If there is a common pattern, how likely is its occurrence? 

 Is the pattern explainable, and if not, is it worth spending time on further 

investigation or on the extension of the sample? 

While these are important questions that arise during an audit, they will most likely 

also be relevant to other domains. Regardless whether the identification of items was 

conducted manually by a domain expert based on experience (educated guess) or by a 

data scientist with the help of pattern recognition algorithms (algorithmic guess), 

these questions are worth considering for both parties alike. 
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In order to answer these questions we introduce a method that visualizes 

commonalities in subsets and highlights items that have a low likelihood of 

occurrence. Visualization in general helps to facilitate all phases from the description, 

collection and processing of information to comprehension and knowledge discovery. 

The use of interactive visualization has proven to facilitate communication and 

significantly increase individual learning as well as overall team performance [11]. 

Following [12] visualization is generally defined as the visual representation of 

information in order to enable communication and exploration. Moreover, when 

visualizing data the intention must not be to merely draw a pretty picture and leave it 

as is, but instead create something that enables people to extract their own insights 

and conclusions from what the data is telling [13]. When configured properly, 

visualization can be an efficient tool for making complex interrelationships intuitively 

understandable for users. Our goal is hence to provide plots that put domain experts 

and data scientists on the same level regarding the interpretation and discussion of 

results, insights and implications. This facilitates the dialogue and collaboration 

between both parties (hybrid intelligence). Last but not least, to cover the whole 

process in Figure 1, visualizations are very useful for documentation. 

3 Towards the Visualization of Commonality 

Our starting point is a dataset that has already gone through all the necessary 

preprocessing steps. Compare Figure 1, the dataset has been extracted, validated and 

enriched. Let 𝐷 denote such a preprocessed dataset with an arbitrary number of 

columns 𝑐 and rows 𝑟. Additionally, from 𝐷 we have obtained a subset 𝑑, that is 𝑑 ⊂ 𝐷 with 𝑐(𝑑) =  𝑐(𝐷) and 𝑟(𝑑)  <  𝑟(𝐷). We now want to define a measure that 

tells us if there is something that the items in 𝑑 have in common, and if so, how 

unusual the commonality is. Figure 2 illustrates our framework of the approach. The 

measures and notations are described in the following sections. On the upside, unless 

the entire dataset is altered, the measures only have to be calculated once to separately 

store them. Then, regardless the subset, the measures can always be loaded and 

reapplied. Subject to the size of the subsets, this makes the approach highly scalable. 

On the downside, our approach is not a one-size-fits-all measure, but differs 

depending on the data type of the data fields. In statistics levels of measurement are 

typically divided into four types: nominal, ordinal, interval, and ratio data [14]. Here, 

we start with the distinction between categorical and continuous data and will later on 

discuss how to adjust for a more granular differentiation. 
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Figure 2. Commonality Framework 

3.1 Categorical Values 

In general, categorical data can only take specific values that are clearly separable 

[14]. More precisely, the following definitions and arguments apply to Booleans, 

integers, characters and strings. 

 

Definition of Categorical Commonality. Within our framework (Figure 2), we use 

the concept of cardinality as the basis for the definition of categorical commonality. 

Cardinality describes the number of different elements in a dataset. Let |𝑑[𝑖]| denote 

the cardinality of a certain data field 𝑖 in subset 𝑑, where 𝑖 = 1,… , 𝑐(𝐷). Then, the 

minimum cardinality equals 1 if all the values in 𝑑[𝑖] are identical and the maximum 

is equal to the number of rows of the subset 𝑟(𝑑) if all values in 𝑑[𝑖] are different: 

 |𝑑[𝑖]| ∈ {𝑥 ∈ ℕ| 1 ≤ 𝑥 ≤ 𝑟(𝑑[𝑖])},       𝑖 = 1, … , 𝑐(𝐷). (1) 

From (1), we say a data field of the subset has commonality if the cardinality of the 

data field in the subset is equal to 1 while its cardinality with regards to the original 

dataset exceeds 1. That is to say, commonality exists if the following holds: 

 Commonality ≔ |𝑑[𝑖]| = 1 ∧ |𝐷[𝑖]| > 1,       𝑖 = 1, … , 𝑐(𝐷). (2) 

To summarize, we take the whole dataset, count the unique elements within a 

categorical data field and repeat the procedure for the subset. We then compare the 

resulting numbers: if the subset only holds a single unique element while the whole 

dataset holds more than one unique element, we say there is commonality in the 

subset. We include the constraint in (2) due to the fact that a cardinality of 1 in the 

whole dataset will undoubtedly result in a cardinality of 1 for any subset, regardless 

of the composition. Such causality is obvious and there is no need to visualize the 

obvious. 

 

Definition of Categorical Commonality Likelihood. The intention is to find a 

likelihood measure for the occurrence of commonality. The measure must be close to 

zero in case the observed commonality is highly improbable and close to one in case 

commonality is most likely. Such a measure can be derived from the multivariate 
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hypergeometric distribution that is used in combinatorics. The distribution can be 

described with the typical example of drawing balls of different color from an urn 

without replacement: let there be 𝐾𝑖 balls of color 𝑖  in the urn and there are 𝑐 

different colors in total, so that the urn contains a total of 𝑁 = ∑ 𝐾𝑖𝑐𝑖=1  balls. If we 

take out 𝑛 balls at random without replacement, it follows that the number of balls 𝑘𝑖 
of each color 𝑖 = 1,… , 𝑐 in the resulting sample has the multivariate hypergeometric 

distribution. Consequently, the probability 𝑃𝑐 for obtaining a specific composition of 

colored balls in the sample can be derived as follows [15-16]: 

 𝑃𝑐(𝑋1 = 𝑘1  ∧  𝑋2 = 𝑘2  ∧  ⋯ ∧  𝑋𝑐 = 𝑘𝑐) =  (𝐾1𝑘1) ∙ (𝐾2𝑘2) ∙ ⋯ ∙ (𝐾𝑐𝑘𝑐)(𝑁𝑛) . (3) 

Let us now change the urn and ball terminology by reinterpreting the sample as our 

subset and the colors as the cardinality of a data field in the whole dataset. Then, 𝑁 is 

its number of rows and 𝑛 is the number of rows of the subset. Furthermore, let 𝑘𝑗 
denote the value count in a subset’s data field that shows commonality as defined in 

(2). Then, the probability in (3) reduces to the likelihood measure for the occurrence 

of commonality we were looking for: 

 𝑃1(𝑋𝑗 = 𝑘𝑗  | {𝑋𝑖 = 0, ∀ 𝑖 ≠ 𝑗}) =  (𝐾𝑗𝑘𝑗)(𝑁𝑛) ⇒ (𝐾𝑗𝑛 )(𝑁𝑛)  . (4) 

To summarize, if a categorical data field shows commonality as in (2), all values in 

the data field are identical. We count how often the value appears in the whole data 

set (𝐾𝑗) and how often the value appears in the subset (𝑘𝑗). As the subset’s data field 

only contains identical values, it follows that 𝑘𝑗 is equal to the sample size 𝑛. In 

combination with the size of the whole dataset 𝑁 we set up the binomial coefficients 

for numerator and denominator in (4). For the properties of binomial coefficients see 

for example [17]. The resulting measure yields values close to zero in case it is highly 

improbable to end up with commonality (the larger the difference between 𝑁 and 𝐾) 

and values close to one in case commonality is most likely (the smaller the difference 

between 𝑁 and 𝐾). 

 

3.2 Continuous Values 

Unlike categorical data types, continuous data can take any value within a specific 

range for which the intention regarding measurement is usually not based on counting 

[14]. In this context, the following definitions and arguments apply to floating point 

numbers. 

 

Definition of Continuous Commonality. Unfortunately, the concept of cardinality in 

(2) is not an applicable measure for floating point numbers. This is due to the fact that 

cardinality describes the number of different elements in a dataset whereas floats have 

no clear boundaries within their value range, and as stated, are not for counting. Thus, 

for floats we turn towards the distribution of the values within a data field that holds 
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continuous data. Let 𝑓 denote the probability density function of the distribution of 

such a data field in dataset 𝐷[𝑖], so that 

 ∫ 𝑓(𝐷[𝑖])𝑑𝐷[𝑖] = 1.∞−∞  (5) 

Following [18-19], we can use kernel density estimation to find an estimate for the 

density function in (5) from the observed data 𝐷[𝑖]. The kernel estimator is defined by 

 𝑓(𝐷[𝑖]) =  1𝑛ℎ ∙ ∑ 𝐾 (𝐷[𝑖]−𝑋𝑗ℎ )𝑛𝑗=1 , (6) 

where parameter ℎ is the bandwidth that describes the width of kernels 𝐾 that are 

created for each observed value within 𝐷[𝑖] and are then added up to form the 

estimated density curve. Now, we simply define continuous commonality as a state in 

which the value range of the subset is much narrower than the value range regarding 

the entire dataset. That is, in reference to (6) we say that continuous commonality 

exists, if all values in 𝑑[𝑖] lie close to each other when projected on 𝑓(𝐷[𝑖]). As this is 

a heuristic approach we do not provide a more precise definition and leave it to the 

user to decide what is close enough for commonality and what is not. 

 

Definition of Continuous Commonality Likelihood. As with categorical data, the 

intention is to find a likelihood measure for the occurrence of commonality. Since 𝑓 

in (6) is an estimator for the density function, we can use it to derive probabilities. 

More precisely, we are looking for the probability of the value range of the subset, 

that is described by the interval [𝑚𝑖𝑛(𝑑[𝑖]),𝑚𝑎𝑥(𝑑[𝑖])]. The probability measure for 

continuous commonality then results from inserting these interval limits into (5): 

 𝑃(𝑚𝑖𝑛(𝑑[𝑖]) ≤ 𝑋 ≤ 𝑚𝑎𝑥(𝑑[𝑖])) = ∫ 𝑓(𝐷[𝑖])𝑑𝐷[𝑖].max (𝑑[𝑖])min (𝑑[𝑖])  (7) 

As desired, the expression describes a measure that takes values between 0 for single 

or identical values and 1 in case the value range of the subset equals the range of the 

entire dataset. 

 

In summary, the overall intention of the defined measures is not to be exact, but to 

allow for comparability of the various data fields in a subset with respect to the 

likelihood of the data fields’ value occurrence. That is, the measures in this section 

must be seen as guidance for focusing discussions and interpretations. Please note that 

we will use the complementary probability for the visualizations to the described 

measure in (4) as we are interested in the unusualness of the occurrence of certain 

patterns. 

 

3.3 Challenges and Minor Adjustments 

Our following listing is not exhaustive, but highlights key issues that might 

complicate visualization and interpretation. 

 

https://doi.org/10.30844/wi_2020_c7-stege



Missing Values. Following [20], missing data is defined as unobserved values that 

could have been meaningful for further analyses, if observed. When dealing with 

missing data, it is particularly important to find out why values are missing in order to 

rely on potential conclusions drawn from the data. Missing data can derive from, for 

example, non-response, sensor failure, high level of noise, or simply unknown 

information [21]. However, often the reason for the occurrence of missing values 

might be unclear. In that case, we suggest to impute all missing values as follows. For 

categorical data fields missing values can be treated as a separate category by 

assigning them a specific string, character or integer. Missing continuous values can 

be imputed with straightforward measures of center like mean, median or mode. In 

addition it is necessary to create a column that flags each record that contains imputed 

continuous values in order to be able to visualize them on the density curve. Please 

note that the main intention of such an approach is to assess whether missing values 

of certain records in the data set are unusual, not to find the best possible imputation. 

More precisely, in reference to the framework of missing data types [22], the intention 

is to facilitate the differentiation between structural deficiencies in the data and 

random occurrences as a prerequisite for an adequate imputation of missing values. 

For information on in-depth imputation methods see [23]. 

 

Hybrid Data Types. When considering data types in the context of commonality 

there are two conditions that we refer to as hybrid, namely categorical data that 

resembles continuous data (i) and vice versa (ii). 

(i) Ordinal data refers to values that have meaningful order and can be ranked so 

that higher values represent more of a certain characteristic than lower values 

[14]. If a categorical data field contains ordinal data and there is high cardinality, 

then measuring categorical commonality will most likely skew the picture as 

information about the value order is lost. For such data fields it makes more 

sense to measure continuous commonality rather than categorical commonality. 

(ii) In case a continuous data field has low cardinality, floating point numbers in that 

data field might represent categories rather than a distribution. For such data 

fields it makes more sense to measure categorical commonality, as the value 

order information is of lesser (or zero) importance compared to the categorical 

allocation of values in the data field.  

Again, the intention is not to measure exact probabilities, but to provide guidance. 

With this in mind, for interpretation it can even help to measure both categorical and 

continuous commonality when dealing with hybrid data types. 

 

Date and Time Values. Given that date and time values come in various forms, 

working with such data types can be quite complex. In order to measure commonality, 

we suggest to convert data fields that contain date and time values to integers 

regardless of whether they have been made available as string or any other kind of 

date format. In this way, the information about the value order is preserved and, if 

desired, both categorical and continuous commonality can be measured. 
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Heavy Tailed Distributions. Statisticians use the term heavy tails to describe 

distributions that contain extreme events. With respect to continuous data types, one 

often encounters a skewness towards large values in a dataset, meaning that one or 

few records are much larger than the bulk of the data. Kernel density estimation 

which we apply in the process of measuring continuous commonality comes with 

some drawbacks, especially with respect to heavy tailed distributions [15]. Thus, we 

use log transformation on the data, if heavy tailed, prior to estimating kernel density 

as in (6). 

4 Applicability Check 

Our approach described in the previous section is now applied to a real world problem 

from the audit. As starting point, we use an anonymized dataset extracted from the 

risk data warehouse of a European bank and describe the visualization setup with the 

help of an arbitrary sample (Section 4.1). We then perform an applicability check: we 

take the roles of an auditor and a data scientist and have each of them draw unusual 

items from the bank’s dataset. Upon that we present how to examine those subsets 

with the help of commonality plots (Section 4.2). From the results we derive 

limitations and recommendations (Section 4.3). 

4.1 Data Description and Visualization Setup 

As illustrative example of our approach we use a dataset that contains typical 

information that a bank is required to provide during an audit for a specific reporting 

date. As such, the resulting information represents an unalterable snapshot of the 

bank’s portfolio as of that reporting date. The data is an anonymized random sample 

with 15 columns and 1,000 rows based on real transactions extracted from the risk 

data warehouse of a European bank. Table 1 shows a summary of the dataset. 

Table 1. Dataset Summary 

Data field Cardinality Data type Description 

rep_date 1 hybrid Dataset extraction date / reporting date 

legal_entity 2 categorical Name of legal entity / subsidiary 

portfolio 2 categorical Name of portfolio 

stage 3 categorical Risk class of the expected credit loss model 

country 10 categorical Contract country of origin 

product_type 12 categorical Contract product type 

dayspastdue 14 hybrid No. of days that a payment is delayed 

init_rating 26 hybrid Rating at origination 

rating 26 hybrid Current rating 

contract_age 32 hybrid Age of contract [in years] 

loss_provision 296 continuous Loan loss provision 

start_date 585 hybrid Date of origination of the contract 

exposure 611 continuous Gross carrying amount 
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prob_dflt 757 continuous Probability of default 

contract_id 1000 categorical Unique contract identifier 

 

The table also marks those data fields we claim to be hybrid. For further analysis 

we decide to exclude all data fields that have identical values throughout the entire 

dataset. This applies to the data field that holds information about the reporting date 

(|𝐷[𝑟𝑒𝑝_𝑑𝑎𝑡𝑒]|  =  1). All calculations were carried out using a notebook with a four-

core i7 2.90 GHz processor and 32 GB of RAM. Performance tests reveal a 

reasonably linear correlation between computational effort and the size of the dataset: 

59.4 ms ± 6.2 ms per run for one thousand rows, 6.8 s ± 47.2 ms per run for one 

million rows, 76 s ± 2.4 s per run for ten million rows. 

In order to describe the visualization setup let us assume that we have obtained an 

arbitrary subset from the data for which we have calculated the commonality 

measures defined in Section 3. Then, for the visualization of categorical commonality 

we use bar charts to present the commonality likelihood measures from (4) as this 

type of chart is easy to interpret and very useful for displaying comparative data. The 

bars are sorted by the level of likelihood and are displayed horizontally for clearer 

labeling. In order to facilitate interpretation of the likelihood measures we 

additionally provide the ratio of value appearance in the subset versus appearance in 

the entire dataset. For this we use pie charts as they are among the most popular 

options for displaying compositions, especially when there are only a few categories. 

More on that in the following section. For the visualization of continuous 

commonality, we introduce a projection method that facilitates the visual 

investigation of numerous distributions. Let us have a look at the distributions of the 

data fields 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡_𝑎𝑔𝑒 and 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 as an example (see Figure 3). Along the 

distribution we position the values from the arbitrary subset (red marks). The size of 

the marks is an indication for the density of the values: the higher the density, the 

lower the size of the mark. Additionally, we integrate a rug plot, which is a one-

dimensional display of the distribution that uses short lines for each value occurrence 

[24]. As a result, it is now possible to compress the plot in favor of a minimalistic 

design without losing much information about the distribution. While usually two-

dimensional scatter plots or heat maps are used to visualize distributions and patterns 

in data, we end up with one-dimensional plots that can be stacked to examine all 

continuous data fields in the dataset at a glance.  
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Figure 3. Projection Method for the Continuous Commonality Plot 

4.2 Subset Selection and Interpretation 

In this section we demonstrate how commonality contributes to the examination of 

data in general (example 1) and how visualizing commonality can facilitate the 

dialogue between a data scientist and an auditor (example 2). For this purpose we 

separately select two subsets from the dataset – one in the role of an auditor and one 

as a data scientist. Both subsets are examined with the help of commonality plots. 

 

Example 1: Auditor Subset Selection. The auditor knows from the bank’s lending 

policy that loans are only granted to borrowers with a certain level of credit-

worthiness. For credit quality assessment the bank uses a rating scale that ranges from 

1 (highest quality, lowest level of credit risk) to 30 (lowest quality, default without 

prospect for recovery). The bank will not grant loans with a rating grade worse than 

20. Thus, the auditor considers deviations from this policy to be unusual and selects 

all items of 𝐷[𝑖𝑛𝑖𝑡_𝑟𝑎𝑡𝑖𝑛𝑔] > 20 for further investigation. The auditor uses 

commonality plots to further examine the resulting subset (see Figure 4, left-hand 

side, for overview purposes we only show continuous commonality plots where 1 − 𝑃 > 5%). The categorical plot 

contract_age

0 5 302510 15 20

0 3010 20

d
e

n
si

ty

0

0.1

0.3

0.4

0.2

d
e

n
si

ty

log(exposure)

0

0.0001

0.0003

0.0004

0.0005

0.0002

https://doi.org/10.30844/wi_2020_c7-stege



 

Figure 4. Commonality Plots for Auditor and Data Scientist Subset 

reveals that all items of the auditor’s subset have the same product type, age, date of 

issue and country of origin. While the fact that all items are from the same country is 

not unusual according to the bar size, the categorical commonality for the remaining 

data fields appears to be highly unusual. The pie charts help the auditor to better 

classify the unusualness: a contract age of four years seems to be an age which occurs 

very often in the entire dataset, so the resulting share in the subset is very small. This 

needs to be taken into account when comparing the likelihood of occurrence of the 

contract age (lower share, higher likelihood of occurrence) to that of start date and 

product type (higher share, lower likelihood of occurrence). Regarding the continuous 

plot for the start date, the unusualness of occurrence of identical values is emphasized 

(1 − 𝑃 = 100%). The continuous plot for the initial rating distribution reflects the 

auditor’s selection (all initial ratings worse than 20). The auditor uses the insights 

from the commonality plots as basis to question the bank. After consultation with the 

bank it turns out there was a merger with a retail bank in September 2015. Following 

the merger, the date of issue of the newly added contracts was set to the date of the 

merger and not to the original date of issue. Since the credit quality at origination is 

directly linked to the date of issue, this lead to incorrectly recorded initial ratings, 

which in turn may lead to misstatements in the financial statement of the bank. 

 

Example 2: Data Scientist Subset Selection. The data scientist applies pattern 

recognition algorithms to the distributions of all continuous data fields and finds an 

Categorical Commonality

Example 2: Data Scientist Subset

Categorical Commonality

Example 1: Auditor Subset

Continuous Commonality Continuous Commonality

start_date

12/1985 06/1996 12/201806/2007

1 − 𝑃 = 100%
init_rating

1 10 3020

1 − 𝑃 =   . %
rating

1 10 3020

1 − 𝑃 = 1 . %
Log(prob_dflt) 1 − 𝑃 =  5. %
loss_provision

0 2000 60004000

1 − 𝑃 = 5. %

rating

1 10 3020

1 − 𝑃 =   . %

start_date

(=2015-09-30)

Data Field / Value Unusualness

contract_age (=4)

product_type

(=Credit Card)

country (=XX)

Value 

Share

stage (=2)

Data Field / Value Unusualness

portfolio

(=EmergingMarkets)

legal_entity (=ABC)

dayspastdue (=0)

country (=XX)

Value 

Share

0 20 40 60 100800 20 40 60 10080

https://doi.org/10.30844/wi_2020_c7-stege



unusual value cluster in 𝐷[𝑝𝑟𝑜𝑏_𝑑𝑓𝑙𝑡]. Thus, the data scientist selects all items 

belonging to the cluster for further investigation. Now, without going into technical 

details of outlier detection, the data scientist can use commonality plots to examine 

the subset in close collaboration with the auditor. The commonality plot for the data 

scientist’s subset is shown on the right-hand side in Figure 4. The categorical plot 

reveals that all items in the subset come from a certain portfolio and country and are 

allocated to the second risk class that holds contracts for which the credit quality has 

significantly deteriorated since origination. The unusualness of risk class and portfolio 

is emphasized by the pie charts. None of the contracts in the sample have delayed 

payments, which is questionable as an allocation to the second risk class is often 

accompanied by arrears. Despite the credit quality deterioration, the loan loss 

provision recognized for these items is very low with reference to the continuous plot 

of the distribution. In addition, the low default probability does not relate to the credit 

rating that is recorded for the contracts (high rating is equal to poor credit quality). 

After consultation, it turns out that subsidiary “ABC” of the bank provides 

percentages in a different value range ([0,1]) than the way in which percentages are 

displayed and shared by the affiliate ([0,100]). If undetected, the inconsistent 

measures lead to a significant undervaluation of the credit risk of the subsidiary in the 

financial statements. 

 

To summarize, in example 1 an auditor uses domain knowledge to select a sample 

of unusual items. We then demonstrate how commonality plots generally support 

examination and the discussion of findings and implications. Example 2 goes one step 

further and shows how a data scientist can be integrated into the workflow to make it 

hybrid. The data scientist is capable to reveal patterns that are not apparent with pure 

domain knowledge and commonality plots help to facilitate a dialogue between data 

scientist and auditor. Without a sound collaboration there is high risk that the 

potential misstatements we describe remained undetected. 

4.3 Limitations and Recommendations 

Besides illustrating the benefits for examination and discussion, Figure 4 also helps to 

reveal drawbacks of the visualization method. A major difficulty is the overall 

calibration of the likelihood measures. For categorical commonality a combination of 

likelihood measures (bar chart) and total share (pie chart) to a joint measure will most 

likely yield more granular results and improve interpretability. In terms of continuous 

commonality, the calibration is more complex. If the bulk of the values of a subset is 

located on one end of the distribution and there is a single outlier on the other end, the 

likelihood measure will be close to 1 as we calculate the integral of the entire density 

curve. Additionally, if the bulk happens to occur with high density, its values will be 

displayed with a small marker size. For enhancement we suggest to integrate a 

function that adds a certain weight to the number of occurrences in clusters to 

separate bulks from outliers when measuring the likelihood of continuous 

commonality. Another drawback is that categorical commonality, as we define it, 

only reveals “pure” or “first-hand” commonality, i.e., a cardinality of one. It follows 
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that a single outlier in an otherwise identical subset is enough to exclude a data field 

from further investigation. Thus, it seems worthwhile to expand the categorical 

commonality to also account for cases of “second-hand” commonality. As mentioned 

in Section 3, we use log transformation to avoid the flaws of kernel density estimation 

regarding heavy-tailed distributions. This highly influences the appearance of the 

plots and can also affect the likelihood measures. The same applies to kernel density 

estimator parameter tuning or a completely different estimation approach. It is 

important to keep these limitations in mind when drawing conclusions from the 

resulting measures and visualizations. 

5 Discussion and Outlook 

The applicability check shows how an auditor can use commonality plots as 

indication of where to focus further investigation. More generally, visualizing 

commonality can be seen as a first aid kit for domain experts to gain insights and 

formulate better questions for discussion. From a different perspective, commonality 

plots facilitate the interpretation of the work of data scientists, who may be the only 

ones capable of revealing certain phenomena, but in many cases do not have 

sufficient domain knowledge to explain these phenomena. Following, commonality 

plots can be viewed as a translation device that helps bridging the gap between data 

science and domain expertise, and thus provides decision support. The proposed 

method performs best for structured datasets that remain unaltered throughout the 

analysis, such as data at a specific cut-off date. On the other hand, our method is least 

efficient for the analysis of time series data that is constantly updated, such as real-

time data, as this also requires a constant update of the commonality measures that 

need to be calculated for the entire dataset. Against this background, the applicability 

check can be adapted to other domains, where specific subsets of structured datasets 

are examined at a certain cut-off date or for a fixed period. For instance in health 

domains (What does a certain group of patients or disease patterns have in common?), 

marketing (What do peak sales or certain customers have in common?) or machine 

maintenance (Is there something common about specific machine failures?). The first 

example of the applicability check shows that such questions can be answered with 

the help of commonality plots by a respective domain expert him or herself. A great 

potential of our method lies in the interpretability of resulting subsets obtained from 

sophisticated pattern recognition algorithms. In other words, our method becomes 

most beneficial when applied in a hybrid framework where domain knowledge and 

data science are combined. On the downside, the limitations outlined in the previous 

section show that the biggest strength of our method is also its biggest weakness: the 

visualization method is capable to highlight potential areas for further investigation, 

but, in its current state, may also obscure certain information that is actually relevant. 

Conceptual enhancements such as the proposed second-hand commonality and 

weighting functions for the likelihood measures are helpful to limit the drawbacks. 

Besides these technical limitations, the overall challenge is to integrate our 

commonality and visualization method into the regular workflow of (structural) data 
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analytics. We describe most building blocks necessary for this purpose, but these still 

need to be properly calibrated and automated in order to increase overall 

interpretability, reliance, and acceptance. For this purpose, the measures for the entire 

dataset can be automatically calculated and stored in the background. Similarly, 

likelihood measures can be calibrated automatically, so that whenever subsets 

undergo investigation, commonality plots are instantly and seamlessly made 

available, regardless the domain or size of the datasets. Until now, our overall 

assumption was that the process starts with a dataset that has already undergone 

preprocessing. However, there is great potential in setting an earlier starting point to 

properly align commonality measures and data preprocessing. In this context, e.g., 

aligned and collaborative feature engineering can reduce the cardinality of certain 

data fields to enable a more precise and distinctive analysis of commonality. This also 

enables a critical assessment of the impact of missing or erroneous data at an earlier 

stage. Ultimately, the visualization method must be applied with high caution as 

minor changes in calibration can have significant effects on the visual appearance of 

the commonality plots. As this is not a one-size-fits-all visualization method, the 

derivation of findings and conclusions critically depend on the users’ ability to 

carefully weigh and classify the results. Otherwise there is a high risk of misjudgment 

that can have serious consequences in the respective domain. Future research can 

focus on a proper calibration of the measures to make results more transparent and to 

increase overall interpretability of the visualizations. Equally important is a provision 

of commonality plots without much technical effort and for various kinds of datasets 

due to the fact that seamless availability is essential for increased acceptance. We will 

also concentrate on applying our method to open datasets and plan to publish the code 

as well as the results for reproducibility and benchmarking. 

6 Conclusions 

We introduce a method that bridges the gap between domain experts capable of 

identifying business needs and data scientists with toolboxes full of insight producing 

algorithms. Our research is driven by a typical challenge from the audit domain, 

which is answering the question of whether there is something unusual about items in 

a sample. We introduce commonality plots that visualize the likelihood of occurrence 

of values in a given subset. In our applicability check we take the roles of an auditor 

and a data scientist and demonstrate how commonality plots can be applied to support 

investigation and the discussion of findings and implications. The overall intention of 

our applicability check is not only to explain functionalities, but also to show that 

commonality plots are a translation device that facilitates the integration of practical 

data science into existing workflows by improving communication and collaboration 

(hybrid intelligence). In its current state, our commonality measures are far from 

being capable to reveal the whole truth about a subset of data. Most likely, they never 

will. On the upside, despite the limitations, if applied with caution, commonality plots 

have the potential to create value by enabling cross-disciplinary teams to reveal, 

interpret and discuss findings and implications together. As our method is not 
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restricted to auditing but designed to be universally applicable for structured datasets, 

we hope this encourages researchers and practitioners to apply and further develop it 

in their respective domains. 
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