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Abstract. The allocation of scarce resources is an important task in information 

systems. We focus on network procurement where a telecommunications 

provider aims to connect specific nodes in a network. To establish connection 

between nodes, the provider needs to buy the respective edge. In this strategic 

version of the Steiner Minimum Tree problem the edges are owned by bidders 

with private costs. Thus, in order to find an efficient solution, a mechanism that 

incentivizes participants to state their costs truthfully and runs in polynomial 

time is required. Recently, deferred-acceptance auctions have been proposed to 

solve NP-hard allocation problems. We implement several approximation 

mechanisms and provide an extensive experimental analysis comparing the 

average-case solution quality of deferred-acceptance algorithms with that of 

traditional approximation algorithms. We find that deferred-acceptance 

algorithms are comparable or even outperform the best approximation 

algorithms on instances from the SteinLib test data collection. 

Keywords: Steiner tree problem, approximation mechanism, deferred-

acceptance auction  

1 Introduction 

Many information systems nowadays are designed to coordinate activities or allocate 

scarce resources. The design of respective information systems has a number of 

challenges because incentives of the participants need to be considered, but also 

computational problems play a role. This has led to a fruitful line of research on the 

design of electronic markets [1-5].  

We focus on a specific market design application, the procurement of networks and 

aim for auction mechanisms that lead to efficient outcomes and exhibit simple 

strategies for the suppliers to bid truthful. Such mechanisms are also referred to as 

implementable, incentive compatible, or strategyproof, in case bidders even have a 

dominant strategy. The Vickrey-Clarke-Groves (VCG) mechanism is the unique 

strategyproof and efficient mechanism, and its generality is remarkable [6]. 

Unfortunately, the VCG mechanism requires the auctioneer to solve the allocation 
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problem exactly. This cannot be expected in large NP-hard resource allocation 

problems.  

There is significant literature in the design of approximation algorithms for 

computationally hard problems [7]. Algorithmic mechanism design extends this 

literature in an important way [6]. The goal of approximation mechanisms is to design 

algorithms that run in polynomial time and satisfy strong game-theoretical 

equilibrium solution concepts such that bidders have incentives to reveal their 

valuations truthfully and the auctioneer can determine the optimal allocation or one 

that approximates the optimal solution. Typically, designers of approximation 

mechanisms aim for dominant-strategy incentive compatibility or strategyproofness. 

Such mechanisms are prior-free and truthful bidding is a dominant strategy for 

individual bidders. 

Network procurement is a prime application where auction mechanisms play an 

important role in business practice. A telecommunication company is interested in 

connecting several sites or terminals via a cost-minimal set of edges connecting 

vertices in a network. The terminals constitute a subset of all vertices in the network 

and suppliers can provide individual edges in the network at certain cost. The Steiner 

Minimum Tree problem (SMT) is a well-known model of this network procurement 

problem. Even with complete information about suppliers' costs, finding a cost-

minimal solution is NP-hard. The SMT problem on graphs is one of the most well-

known NP-complete problems [8], and central in various types of network design 

problems, which have received significant attention in operations research [9-11].  

In the procurement environment, the costs of establishing a link is the private 

information of its supplier. Each supplier wants to maximize her payoff, i.e., her bids 

minus her private cost for setting up the connection. In such an auction, the auctioneer 

wants to set incentives for bidders to reveal their costs truthfully. Since the SMT 

problem is NP-complete, its optimal solution, which corresponds to the maximally 

achievable social welfare, cannot be expected to be obtained in reasonable time.  

This paper reviews several well-known approximation algorithms for the SMT 

problem in settings where the edges of the graph are strategic agents. Based on well-

known theory from mechanism design, we extend these approximation algorithms to 

strategyproof mechanisms, if possible.  

[12] and [13] recently proposed deferred-acceptance auctions (DAAs), a class of 

greedy algorithms which are weakly group-strategyproof for bidders with single-

dimensional types. This means, even a coalition of bidders cannot manipulate 

profitably via deviations from truthful bidding, which makes them robust against 

collusive bidding strategies. This is a very desirable property in many applications. 

Also, a deferred-acceptance auction can be implemented both as a sealed-bid and as a 

clock auction and it was recently characterized as obviously strategyproof  [14], 

indicating that it is obvious for a player that the best outcome achievable by lying 

cannot be better than the worst outcome from telling the truth.  

An important question is, whether these strong incentive properties are at the 

expense of solution quality, i.e. they might lead to low allocative efficiency. [15] 

studied this question from a worst-case approximation perspective. Interestingly, 

experimental analysis of the specific allocation problem showed very high solution 
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quality on average [16]. The allocation problem under consideration is quite specific 

and it is not clear whether one could achieve high average efficiency with a DAA also 

for other problems. 

In our analysis, we start with the best known approximation algorithm by [21], 

before we analyze the approach by [19], and primal-dual algorithms [20]. These are 

arguably the most prominent approaches to the SMT problem in the literature. 

We then compare these results to those of deferred-acceptance auctions, which 

were introduced by Milgrom and Segal [12]. We conclude that the practical 

performance of deferred acceptance algorithms, whilst having worse worst-case 

performance guarantees, perform well in practical implementations. 

In Section 2 we introduce related literature, before we introduce the SMT and 

relevant definitions in Section 3. In Section 4 we discuss well-known approximation 

algorithms for the SMT problem, and a critical payment scheme, before we introduce 

deferred acceptance auctions. Then, in Section 5 the results of numerical experiments 

based on the SteinerLib are presented. 

2 Related Literature 

Approximation algorithms based on distance networks were proposed by [17] and 

[18]. Mehlhorn [19] developed a faster variant of the latter algorithm. All algorithms 

in this class achieve an approximation ratio of 2, which is also achievable by means of 

primal-dual algorithms, see e.g. [20].  

Loss-contracting approximations are another class of algorithms studied in the 

context of the SMT problem. This approach has been improved in a series of papers. 

The algorithm due to Robins and Zelikovsky [21] currently reaches the best 

approximation ratio of 1.55. Byrka, Grandoni, Rothvoß and Sanità [22] proposed a 

randomized technique that achieves an approximation ratio of ln(4) +  𝜖, i.e. 1.39 in 

the limit. While the algorithm can be de-randomized to obtain a deterministic 

approximation algorithm with polynomial time complexity, the polynomial and 

constants required to reach the approximation factor of 1.39 result in a runtime which 

is not feasible in practice.  

Since randomized approximation algorithms are often not acceptable in industrial 

procurement we focus on the design of deterministic approximation mechanisms. 

While there is no general framework to transform deterministic approximation 

algorithms into strategyproof mechanisms, there exist quite general approaches when 

additional conditions on bidders' valuations are met. Single-mindedness has received 

most attention in the literature on combinatorial auctions [11]. In this case bidders are 

only interested in one specific subset of items (package). This can be a reasonable 

assumption for many real-world markets and it is a very good starting point for our 

analysis of strategyproof approximation mechanism for the SMT problem on graphs. 

In the context of network procurement, we talk about bidders with single-

dimensional types, which means each supplier only having access to a single link 

which she can sell. In many markets, bidders know little about the cost structures of 

https://doi.org/10.30844/wi_2020_c4-bichler



competitors, and the analysis of the single-dimensional case can still lead to 

practically viable and robust mechanisms even if the assumption is not fully satisfied.  

3 Notation and Definitions 

Let G =  (V, E, c) be a weighted, connected graph, where ce is the cost of each edge 

𝑒 ∈ 𝐸. For a subset of edges 𝐹 ⊆ 𝐸, the cost of the edge-induced subgraph is defined 

by 𝑐(𝐹)  = ∑ 𝑐𝑒{𝑒∈𝐹} . A spanning tree of 𝐺 is a subset of edges of 𝐸 such that the 

resulting edge-induced subgraph is connected, cycle-free and contains all vertices 𝑉. 

The minimum spanning tree, denoted by MST(G) is a spanning tree where the sum of 

the costs of its edges is minimal in comparison to all other spanning trees. 

The SMT problem on a connected graph 𝐺 =  (𝑉, 𝐸, 𝑐) is defined as follows. For a 

subset of vertices 𝐾 ⊆  𝑉 called terminals, any tree spanning 𝐾 is called a Steiner 

tree. Any vertex in a Steiner tree which is not a terminal is called a Steiner point. We 

refer to the set of all Steiner trees over 𝐺 as 𝑆𝑡𝑇(𝑉, 𝐸). The objective then is to find a 

minimum cost Steiner tree.  

Let 𝐺𝑉 be the complete graph induced by the vertex set 𝑉, i.e., a complete 

weighted graph 𝐺𝑉 = (𝑉, 𝐸𝑉 , 𝑐𝑉), where each edge cost equals the cost of the shortest 

path in 𝐺 between the two adjacent vertices of that edge. 𝐺𝑉 is then a metric graph 

satisfying the triangle inequality. We call 𝐺𝑉 the distance network of the graph 𝐺. 

Likewise, 𝐺𝐾 denotes the distance network induced by the terminal set 𝐾, 𝐺𝐾 =
(𝐾, 𝐸𝐾 , 𝑐𝐾). Note that 𝐺𝐾 ⊆  𝐺𝑉, as 𝐾 ⊆  𝑉.  

In the following, we describe the design of mechanisms for the SMT problem. We 

consider a set of bidders 𝑁, where each bidder 𝑖 only provides one specific single 

edge 𝑒𝑖. With slight abuse of notation, we also denote with E the set of bidders, with 

𝑐𝑖 the true cost of bidder 𝑖 while 𝑐 refers to the corresponding tuple (𝑐𝑖){𝑖∈𝑁} taken 

over all bidders. Denote with 𝐵𝑖 the domain of bids, 𝑖 can report as her cost for edge 

𝑒𝑖, e.g. 𝐵𝑖  =  ℝ≥ 0 and let 𝐵 = ∏𝑖∈𝑁 𝐵𝑖. For a single-dimensional bidder 𝑖 there is a 

unique and publicly known edge 𝑒𝑖 ∈ 𝐸 such that her true private cost is 𝑐𝑖 only for 

edge 𝑒𝑖 , while for all other edges 𝑒𝑗 ≠ 𝑒𝑖 her true private cost is ∞. Given a vector of 

reported bids 𝑏 ∈  𝐵 with 𝑏 = (𝑏𝑖)𝑖∈𝐸, the expression 𝑏−𝑖 denotes the bid tuple 

without the 𝑖-th entry,  𝑏−𝑖  = (𝑏𝑗)
𝑗∈𝐸\{𝑖}

, and  (𝑐𝑖 , 𝑏−𝑖) denotes the bid tuple where 

the 𝑖-th entry of 𝑏 is replaced by 𝑐𝑖, i.e., bidder 𝑖 reports her true cost. 

A deterministic mechanism  ℳ =  (𝑓, 𝑝) for the SMT problem over vertices 𝑉 and 

edges 𝐸 is defined by a deterministic allocation function {𝑓 ∶  𝐵 →  𝑆𝑡𝑇(𝑉, 𝐸)} and a 

payment scheme 𝑝𝑖 ∶  𝐵 ×  𝑆𝑡𝑇(𝑉, 𝐸) →  ℝ  for each bidder 𝑖. Given the bidders' 

reported bids 𝑏 ∈ 𝐶, the mechanism ℳ =  (𝑓, 𝑝) computes a Steiner tree 𝑓(𝑏) and 

pays each bidder 𝑖 a payment of 𝑝𝑖(𝑏, 𝑓(𝑏)). In an approximation mechanism, the 

allocation function 𝑓 is implemented via a deterministic approximation allocation 

algorithm 𝒜. A mechanism with an approximation allocation algorithm 𝒜 achieves 

an approximation ratio of 𝑟 for SMT if  

max
𝑏∈𝐵

𝑐(𝑂𝑃𝑇(𝑏))

𝑐(𝒜(𝑏))
≤ 𝑟                                                    (1) 
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where 𝑂𝑃𝑇(𝑏) denotes a welfare-maximizing allocation (i.e. an optimal SMT given 

costs 𝑏), 𝑐(𝑂𝑃𝑇(𝑏)) the corresponding social welfare (i.e. cost of the Steiner tree), 

and 𝑐(𝒜(𝑏)) the welfare achieved with the approximation algorithm 𝒜. 

Since bidders are self-interested, their reported bids 𝑏 do not necessarily reflect 

their true costs 𝑐. Instead, bidders try to maximize their quasilinear utilities 𝑢𝑖, i.e., 

payment received minus true cost: 𝑢𝑖(𝑏)  =  𝑝𝑖(𝑏, 𝑓(𝑏))  − 𝑐𝑖. As a result, a 

strategyproof mechanism must offer bidders some incentives to reveal their true costs.  

 

Definition 1: Strategyproofness A mechanism  ℳ =  (𝑓, 𝑝) is strategyproof if for 

all bidders 𝑖 ∈ 𝐸 and all reported bid tuples 𝑏 ∈ 𝐵 it holds that bidder 𝑖 has a weakly 

higher payoff by telling the truth: 

𝑢𝑖(𝑐𝑖 , 𝑏−𝑖) ≥ 𝑢𝑖(𝑏)                                                    (2) 

We also consider the stronger criterion of weak group-strategyproofness, where it is 

impossible for a group of bidders to make all members of the group better off by 

lying. 

 

Definition 2 : Weak Group-Strategyproofness1 A mechanism ℳ =  (𝑓, 𝑝) is 

weakly group-strategyproof if for every set of bidders 𝐼 ⊆ 𝐸 and all reported bid 

tuples 𝑏 ∈ 𝐵 it holds that at least one bidder 𝑖 ∈ 𝐸 has a weakly higher payoff by 

telling the truth:  

𝑢𝑖(𝑐𝐼 , 𝑏−𝐼) ≥ 𝑢𝑖(𝑏)                                                    (3) 

Finally, to avoid monopoly, we restrict 𝐺 to be 2-edge-connected, i.e., 𝐺 remains 

connected even if any single edge is removed. 

With this, we can now formulate the SMT problem as a mechanism design 

problem: Let 𝐺 = (𝑉, 𝐸, 𝑏) be a 2-edge-connected graph. |𝑉| is the number of 

vertices, |𝐸| is the number of edges/bidders, and 𝑏 is the vector of reported bid prices. 

Let 𝐾 ⊆ 𝑉 be the set of terminals. Then the objective is to design a polynomial time 

approximation mechanism which computes an approximately efficient allocation 𝐴, 

and a payment scheme 𝑝 which makes truthful bidding a dominant strategy, such that 

𝑝 and 𝐴 form a strategyproof mechanism. 

 

Definition 3: Monotonic allocation rule An allocation rule 𝑓 of a mechanism 

ℳ =  (𝑓, 𝑝) is monotonic if a bidder 𝑖 who wins with bid 𝑏𝑖 keeps winning for any 

lower bid 𝑏𝑖
′ < 𝑏𝑖  (for any fixed settings of the other bids). 

 

Definition 4: Critical payment scheme A payment scheme 𝑝 of a mechanism 

ℳ =  (𝑓, 𝑝) is critical if a winning bidder 𝑖 receives payment 𝑝𝑖
∗, which is her 

maximum bid allowed for winning: 𝑝𝑖
∗ ∶= sup {𝑏𝑖

′ ∈ 𝐵𝑖 ∶  𝑖 ∈ 𝐴(𝑏𝑖
′, 𝑏−𝑖)}, where 

𝐴(𝑏𝑖
′, 𝑏−𝑖) denotes the set of bidders that would have won if the reported bids were 

(𝑏𝑖
′, 𝑏−𝑖). 

                                                           
1 Note that generally, threshold or clock auctions are not strongly group-strategyproof as 

pointed out in [12] . 
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In his seminal paper, Myerson [23] showed that an allocation rule 𝑓 is implementable 

(i.e. there exists a payment vector 𝑝 such that  ℳ =  (𝑓, 𝑝) is strategyproof) if and 

only if the allocation rule is monotonic. Moreover, if the allocation rule is monotonic 

and losing bidders pay 0, a critical payment scheme is the unique payment rule 𝑝 such 

that  ℳ =  (𝑓, 𝑝) is strategyproof. Hence, with single-dimensional types and 

monotonic approximation algorithms, we can implement an outcome in dominant 

strategies, if we compute critical payments. 

4 Approximation Mechanisms for Single-Dimensional Bidders 

In this section we briefly introduce important approximation algorithms for the 

SMT problem and provide a corresponding critical payment scheme. Finally, we 

design a deferred-acceptance auction  for the SMT problem.  

4.1 Approximation Algorithms for the Steiner Minimum Tree 

Loss-Contracting Algorithms Loss-contracting algorithms have been the most 

successful approach to the design of approximation algorithms for the SMT on graphs 

so far.  

Any Steiner tree 𝑆(𝐺, 𝐾) of 𝐺 is either a full Steiner tree, i.e., all its terminals are 

leaves, or can be decomposed into a forest of full Steiner subtrees (full components) 

by splitting all the non-leaf terminals (splitting a terminal results in two copies of the 

same terminal). The algorithm by Robins and Zelikovsky [21] builds an 𝑀𝑆𝑇 on the 

subgraph 𝐺𝐾 induced by the terminal set 𝐾 and repeatedly adds full components to 

improve the temporary solution. In each iteration, full components are ranked 

according to their gain (by how much the component improves the current temporary 

solution) divided by their loss (i.e., the cost committed by adding a component or 

more precisely its Steiner points). After a full component is added, the temporary 

solution is improved. This step also involves loss-contracting, a method to make 

components which are in conflict with added ones less appealing. By these means, the 

algorithm by Robins and Zelikovsky [21] achieves an approximation ratio of 1.55 if 

𝑘 → ∞ and it is computable in 𝒪(|𝐾|𝑘 ⋅  |𝑉 − 𝐾|𝑘−2 + 𝑘 ⋅  |𝐾|2𝑘+1 log (|𝐾|)). This is 

the best approximation algorithm so far, but unfortunately it is not monotonic. 

 

Distance-Network-based Approximations Similarly to the loss-contracting 

approximation, the general idea of distance-network-based approximation algorithms 

is to build a 𝑀𝑆𝑇 on a complete subgraph 𝐺𝐾 in the first phase. In the second phase, 

edges in 𝑀𝑆𝑇(𝐺) are re-transformed back to edges in 𝐺, and an 𝑀𝑆𝑇 is computed on 

the resulting graph to remove possible cycles. Finally, in the third phase, non-terminal 

leaves are deleted. This algorithm was proposed by Kou, Markowsky and Berman 

[18] and runs in 𝒪(|𝐾||𝑉|2). However, due to the cycles that can occur in the first 

phase, this standard variant is not monotonic. Mehlhorn [19] designed an algorithm 

which differs in phase 1. Here, the algorithm first partitions 𝐺 into Voronoi regions, 
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which are then utilized to construct a subgraph of 𝐺𝐾, called 𝐺. It then proceeds with 

phase 2 and phase 3. This leads to a worst case run time of 𝒪(|𝑉| log |𝑉| + |𝐸|) and 

achieves an approximation ratio of 2(1 − 1/𝑙) where 𝑙 is the minimal number of 

leaves in any SMT (which is naturally bounded above by the number of terminals). It 

can be shown that the modification of phase 1 leads to a monotonic allocation.  

 

Primal-Dual Approximation Algorithms The approximation algorithm for the SMT 

problem by Goemans and Williamson [20] follows a primal-dual approach which 

requires a runtime of 𝒪(|𝑉|2 \𝑙𝑜𝑔 |𝑉|), also has an approximation ratio of 2 and is 

monotonic. 

4.2 Payment Schemes 

Since the allocations of the algorithms 𝐴𝑀𝐻 by Mehlhorn [19] and the primal-dual 

algorithm 𝐴𝑃𝐷 by Goemans and Williamson [20] are monotonic, they can be extended 

to a strategyproof approximation mechanism. To achieve this, the payment scheme 𝑝 

needs to find the critical payment 𝑝𝑖
∗ for any winner 𝑖, such that every reported bid 𝑏𝑖 

with 𝑏𝑖 ≤ 𝑝𝑖
∗ is guaranteed to win, while every reported bid 𝑏𝑖 with 𝑏𝑖 > 𝑏𝑖

∗ is 

guaranteed to lose. 

Gualà and Proietti [24] proposed a payment scheme which can be computed in 

𝒪((|𝑉| + |𝐾|2)|𝐸| ⋅ log 𝛼(|𝐸|, |𝑉|)) for distance-network based approximation 

algorithms. In this approach the critical payment for 𝑒 is calculated by adding the 

difference between the original cost of the shortest path including 𝑒 and the minimum 

cost of one of the alternative shortest paths without 𝑒 which can be efficiently 

computed  using several tweaks [24-26]. Computation of an alternative path in the 

distance network between two different terminals 𝑣1
′ , 𝑣2

′  can also be done efficiently 

by standard sensitivity analysis [27]. For the PD algorithm, a possibility of obtaining 

critical payments is by using binary search. 

Since the payments described above are critical, they can be used in combination 

with their corresponding approximation algorithm to yield a strategy-proof 

approximation mechanism for single-dimensional bidders [23]. 

4.3 Deferred-Acceptance Auctions 

Greedy algorithms are an important class of approximation algorithms. A greedy-in 

algorithm iteratively chooses the best available option based on the current state (i.e., 

the previous iterations) and adds it to the solution. Contrarily, in the deferred-

acceptance auction (DAA), a greedy-out algorithm is used which removes the least 

favourable alternative from the solution in every iteration.  

A greedy-in procedure which greedily accepts edges is not suitable for constructing 

a Steiner tree, since greedily accepting edges leads to being forced to 'correct' the 

structure afterwards (e.g.. assuring that Steiner points do not end up as leaves) while 

within a greedy-out procedure one only needs to assure that it is still possible to 

construct a Steiner tree based on the remaining edges (i.e. all terminals are still 

connected). Thus this section describes a greedy-out approximation for the Steiner 
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tree problem implemented as a DAA [12]. The DAA is not only strategyproof but also 

weakly group-strategyproof and therefore provides a form of protection against bidder 

collusion.  

The DAA greedily excludes the least desirable option from the solution until 

further removal would lead to an infeasible solution. To decide which option should 

be excluded in each iteration a scoring function is used. A scoring function assigns a 

value of at least 0 to an option 𝑖 based only on the cost of 𝑖 itself and what other 

options are still available (ignoring the other options’ costs, however). In each 

iteration, an option with the highest assigned score is removed from the allocation, 

options that cannot be removed without making the resulting solution infeasible 

receive a score of 0. All remaining options with a score of 0 are accepted in the end. 

Hence, the algorithm always returns a feasible Steiner tree at the end.  

The payment 𝑝(𝑒) for an option 𝑖 is calculated the moment we cannot exclude 𝑖 
from the solution any more, i.e. the moment we assign a score of 0 to it. The payment 

is equal to the bid 𝑖 could have stated such that her score would have been equal to an 

option that was removed in the last iteration before her score was set to 0.  

In a network procurement context, the set of options is the set of edges 𝐸. An edge 

cannot be excluded from the solution if its removal would lead 𝐺 to split into two 

separate connected components, each of which contains at least one terminal. To 

account for the specific requirements of the network procurement context, we analyze 

three scoring functions in our experimental analysis: 

1. the weight of the edge 

2. the weight of the edge divided by the number of adjacent edges 

3. the weight of the edge divided by the edge betweenness centrality of the edge, 

where all pairs of vertices are considered 

We calculate betweenness centrality by using an algorithm due to Brandes [28] on a 

variant 𝐺𝑢 of 𝐺 where all edges have weight 1, i.e. 𝐺𝑢 is the unweighted version of 𝐺. 

This is necessary, since due to incentive reasons a scoring function may only take the 

respective bid and the underlying graph structure into account, not the bids of other 

active bidders. Since in our environment bids are the cost of edges, when calculating 

the score of an edge 𝑒, we must ignore the costs of all other edges 𝑒′ ≠ 𝑒 in our 

calculations. In the following, let 𝐷𝐴𝐴𝑤 (𝐷𝐴𝐴𝑎;  𝐷𝐴𝐴𝑐) denote the DAA with scoring 

by weight (divided by adjacent edges; betweenness centrality). The DAA for the SMT 

problem runs in 𝒪(|𝐸|3 + |𝐸|2|𝑉| + |𝐸|𝑡) including payment calculation where 𝑡 is 

the time necessary to update the scores in each iteration. 

Greedy algorithms are usually fast, but can lead to arbitrarily bad results compared 

to an optimal solution for some problems. For knapsack auctions and general 

combinatorial auctions with single-minded bidders, both of which are maximizing 

social welfare, [15] prove approximation ratios for the allocation algorithms used in 

their DAAs. However, their techniques are not directly applicable to the network 

procurement setting. For instance, consider the three weight functions discussed 

above and a network as given in Figure 1. The network consists of n nodes 𝑣1, … , 𝑣𝑛, 

two of which (𝑣1 and 𝑣𝑛) are terminals. The optimal Steiner Tree consists of only 

keeping edge (𝑣1, 𝑣𝑛), but under DAA this edge is rejected first under all weight 
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functions, forcing the algorithm to accept all other 𝑛 − 1 edges in order to remain 

connected. This leads to an approximation ratio of (𝑛 − 1)/2 proving the 

impossibility of a constant-factor approximation ratio. It remains an open question 

whether there exists a weight function that allows for such an approximation ratio, 

however this seems doubtful. 

Figure 1. An example where DAA leads to an approximation ratio of (n-1)/2 

 

5 Experimental Evaluation 

We describe the data set before we discuss our results. All algorithms were 

implemented in Java. The experiments were executed on a laptop with Intel core i5-

6600k (4 cores, 3.5 GHz) and 8GB RAM.  

For the approximation mechanism based on [19] and the primal-dual algorithm 

[20], we computed the payments as described in Section 4.2. For the former, we 

employed the payment scheme for distance-network based approximation algorithms 

by Gualà and Proietti [24] and for the latter we calculated the payments based on 

binary search. For the DAA we use the threshold payments which are dynamically 

updated throughout the run of the algorithm as described in Section 4.3. Finally, we 

also included the VCG mechanism [29-31] as a baseline. We used the send-and-split 

method [32] as implemented by Iwata [33] to determine optimal solutions.  

5.1 Data 

Experiments are conducted on set I080 of the SteinLib Testdata Library [34]2. 

However, instances which are not 2-edge-connected are not considered since a 

monopoly edge would be worth infinite amounts of money. Instances with names 

ending on 0𝑥 or 3𝑥 are thus not considered, which leaves us with 60 instances all of 

which have 80 vertices. We cluster instances with the same number of terminals and 

edges, this gives twelve clusters consisting of five instances each. As a summary, only 

the mean values for each cluster are reported in this section. The full list of results is 

provided in the appendix. Overall, we have 60 instances and 6 algorithms resulting in 

360 experiments. 

                                                           
2 http://steinlib.zib.de/showset.php?I080 
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5.2 Results 

Allocative Efficiency. In  Table 2 and Table 3, we present the mean efficiency of the 

five instances for each of the twelve terminal-edge combinations we considered in our 

experimental evaluation. While the approximation algorithm by Robins and 

Zelikovsky [21] is not monotonic and thus cannot be extended to an approximation 

mechanism, it is still interesting to compare its allocation efficiency to the other 

algorithms in a complete information setting. Overall, 𝐷𝐴𝐴𝑐 and 𝑅𝑍 were the best 

performing algorithms and the scoring function based on the betweenness centrality 

came out to be the best scoring function for DAAs. With a paired Wilcoxon rank sum 

test the differences in efficiency between 𝐷𝐴𝐴𝑎 and 𝑅𝑍 (𝑝 = 0.88), between 𝐷𝐴𝐴𝑐 

and 𝑅𝑍 (𝑝 = 0.0005), and those between 𝑀𝐻 and 𝑃𝐷 (𝑝 = 0.155) were not 

significant at 𝑝 < 0.0001, while all other pairwise comparisons were significant at 

this level. We also analyse differences in efficiency using a linear regression with 

efficiency as dependent variable, the algorithm, the number of edges and terminals as 

covariates. With the 𝐷𝐴𝐴𝑐 as baseline, the differences to this greedy algorithm were 

positive and significant at the following levels: 𝐷𝐴𝐴𝑤 (𝑝 < 0.0001), 𝑀𝐻 (𝑝 <
0.0001), 𝑃𝐷 (𝑝 < 0.0001), 𝐷𝐴𝐴𝑎 (𝑝 < 0.01), and 𝑅𝑍 (𝑝 < 0.01).  

Table 2. Average efficiency 

E,K 350,6 3160,6 632,6 350,8 3160,8 632,8 

𝑅𝑍 (k=3) 1.07 1.23 1.13 1.11 1.26 1.17 

𝑀𝐻 1.16 1.26 1.30 1.29 1.31 1.34 

𝑃𝐷 1.15 1.26 1.28 1.31 1.31 1.33 

𝐷𝐴𝐴𝑤  2.27 2.27 2.19 2.25 2.40 2.13 

𝐷𝐴𝐴𝑎  1.21 1.47 1.27 1.17 1.35 1.19 

𝐷𝐴𝐴𝑐  1.30 1.14 1.24 1.18 1.10 1.16 

Table 3. Average efficiency (continued) 

E,K 350,16 3160,16 632,16 350,20 3160,20 632,20 

𝑅𝑍 (k=3) 1.19 1.30 1.24 1.21 1.32 1.24 

𝑀𝐻 1.25 1.39 1.30 1.30 1.40 1.33 

𝑃𝐷 1.26 1.39 1.30 1.31 1.40 1.32 

𝐷𝐴𝐴𝑤  1.67 1.85 1.83 1.59 1.71 1.54 

𝐷𝐴𝐴𝑎  1.14 1.26 1.11 1.11 1.18 1.10 

𝐷𝐴𝐴𝑐  1.16 1.06 1.10 1.11 1.06 1.08 

 

Let us now report averages for different subgroups of the experiments in more detail. 

The algorithm by Robins and Zelikovsky performs best for sparse instances, on 

average finding a solution only 25% worse than the optimum and even solutions as 

good as 1.01 times the optimum (instance I080 − 015 of SteinLib). Moreover, it 

performs well for complete graphs, too (1.3 approximation ratio). Mehlhorn's 

algorithm and the primal-dual algorithm achieve similar results (130% − 140% of 

the optimum).  
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The performance of the DAA heavily depends on the scoring function. Using only the 

weight of an edge 𝑐𝑒 as a score, allocative efficiency is never better than 1.48 times of 

the optimum, usually worse than 1.6 times of the optimum and even 2.97 in one 

instance (I080 − 022). It seems clear, that without taking into account the structure of 

the graph, the greedy algorithm employed in 𝐷𝐴𝐴𝑤 can not compete with more 

sophisticated methods. Even in later stages of the DAA, edges are only selected based 

on their individual cost without considering the possible paths this edge is a part on. If 

we use edge weight divided by number of adjacent edges as scoring function, the 

DAA already performs better than the primal-dual algorithm for most sets of 

instances and even achieves results that are better than the results of the algorithm by 

Robins and Zelikovsky for instances with 16 or more terminals. Results are between 

1.06 and 1.6 times the optimum value with 39 out of 60 results lying between 1.1 

and 1.55 times the optimum. This variant performs significantly better than the 𝐷𝐴𝐴𝑤 

(on a significance level of 0.1%). 

Finally, the 𝐷𝐴𝐴𝑐 generally provides better results on average than the algorithm 

by Robins and Zelikovsky for k = 3. On sparse instances with only 6 terminals the 

algorithm by Robins and Zelikovsky still performs slightly better. For these instances, 

the 𝐷𝐴𝐴𝑐 computes solutions that are up to 1.55 times the optimum value, although 

most of the solutions achieve an approximation ratio of 1.3 or lower. 

 

Allocative Efficiency depending on the number of terminals. The results show clearly 

that performance of all DAA variants increases as the number of terminals grows. 

This is to be expected since a greedy-out procedure actually solves MST optimally 

and the SMT problem becomes more like the MST problem for an increasing number 

of terminals (in the limit, when all vertices are terminal, they are identical). 

Contrarily, all other algorithms perform worse the more terminals are present in the 

graph. Moreover, it can be seen that efficiency of 𝐷𝐴𝐴𝑎 and 𝐷𝐴𝐴𝑐 is nearly identical 

for sparse graphs. In sparse graph, the number of possible paths between two nodes is 

very limited. Since an edge 𝑒 with a lot of adjacent edges naturally allows for more 

paths (and hence also more shortest paths) to pass through 𝑒, the betweenness 

centrality of 𝑒 is very dependent on its adjacent edges. Therefore, the DAAs with the 

corresponding scoring functions perform very similarly. 

 

Allocative Efficiency depending on density. It can be seen that the efficiency of the 

𝐷𝐴𝐴𝑤 and the 𝐷𝐴𝐴𝑎 decreases as instances with an increasing number of edges are 

considered. The algorithm by Robins and Zelikovsky experiences the same behavior. 

However, the opposite is true for the 𝐷𝐴𝐴𝑐.  

Table 2 and Table 3 show that the 𝐷𝐴𝐴𝑎 and the 𝐷𝐴𝐴𝑐 find similarly efficient 

solutions for sparse graphs, where no significant difference was observed. For 

complete graphs, every node has the same number of neighbors at the beginning. 

Therefore, before that crucial number of edges has been removed, the 𝐷𝐴𝐴𝑎 makes 

the same choices the 𝐷𝐴𝐴𝑤 makes. In this case, the efficiency of the 𝐷𝐴𝐴𝑎 is 

substantially worse (up to 1.39 times the optimum). The solutions found by the 𝐷𝐴𝐴𝑐 

are never worse than 1.09 times the optimum and in eight out of ten instances at most 

6% worse than the optimal value for complete graphs with 16 or 20 terminals. 
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Runtime. In the following, we discuss the combined runtime required for the 

approximation mechanism to obtain both, allocation and payments (cf. Table 4 and 

Table 5). The differences between 𝐷𝐴𝐴𝑤 and 𝐷𝐴𝐴𝑐 (𝑝 =  0.9794) as well as 

between 𝐷𝐴𝐴𝑎 and 𝐷𝐴𝐴𝑤 (𝑝 = 0.002) are not significant at a level of 𝑝 < 0.0001 

using a Wilcoxon rank sum test, the other pairs were significantly different. Only the 

mechanism based on Mehlhorn's algorithm and the primal dual approach are 

significantly different from 𝑉𝐶𝐺 (𝑝 < 0.0001). Our experiments show that 𝑃𝐷 and 

𝑀𝐻 are by far the fastest. Runtimes observed are lower than 13s on average on the set 

of instances with high numbers of both terminals and edges (Table 5). Performance 

for lower numbers of terminals or edges is even better. Arguably, the more advanced 

payment computation used within 𝑀𝐻 leads to faster completion than calculating 

prices for 𝑃𝐷, although we observed higher allocation runtime of the primal dual 

algorithm when prices were not considered. Interestingly, Mehlhorn's algorithm with 

payment is faster than the primal-dual algorithm despite larger allocation time. This is 

evidently due to the more enhanced payment computation. 

The runtime required by all DAA variants is very dependent on the density of the 

graph while it scales very well with the number of terminals. In our test instances, the 

computation time even decreases with an increasing number of terminals; in contrast 

to all other mechanisms. 𝑉𝐶𝐺 in particular, is very sensitive to higher number of 

terminals. Calculating exact solutions for SMT problems in the case of 20 terminals 

proved to be computationally inefficient, requiring a factor of 40 up to 28.000 of the 

runtime as compared to the best performing DAA variants. Differences between the 

scoring functions are very small. Interestingly, the 𝐷𝐷𝐴𝑤 is slower than the 𝐷𝐴𝐴𝑐 on 

complete graphs. This might be due to the fact that edges scoring 0 early in the 

computation do not need to be assessed in later iterations and the 𝐷𝐴𝐴𝑐 possibly 

finding more of these edges earlier than the 𝐷𝐴𝐴𝑤. 

Table 4. Runtime combined means 

E,K 350,6 3160,6 632,6 350,8 3160,8 632,8 

𝑀𝐻 0.24 0.46 0.17 0.19 0.61 0.29 

𝑃𝐷 0.28 3.14 0.56 0.59 4.66 0.92 

𝐷𝐴𝐴𝑤  1.37 1553.71 10.29 1.29 1678.19 10.15 

𝐷𝐴𝐴𝑎  1.39 1167.31 10.65 1.26 1392.11 10.35 

𝐷𝐴𝐴𝑐  2.34 1476.72 12.89 2.19 1596.73 12.57 

𝑉𝐶𝐺 2.05 1.80 1.71 2.82 2.34 2.54 
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Table 5. Runtime combined means (continued) 

E,K 350,16 3160,16 632,16 350,20 3160,20 632,20 

𝑀𝐻 0.52 1.01 0.33 0.33 1.26 0.49 

𝑃𝐷 1.01 9.91 1.44 1.93 12.97 1.90 

𝐷𝐴𝐴𝑤  1.35 1668.95 10.38 1.39 1478.79 9.84 

𝐷𝐴𝐴𝑎  1.33 1368.65 10.28 1.39 1230.18 9.89 

𝐷𝐴𝐴𝑐  2.22 1547.89 12.91 2.32 1377.29 12.23 

𝑉𝐶𝐺 638.87 532.76 646.89 67544.54 58556.20 67595.38 

6 Conclusions 

The design of electronic markets has a number of challenges due to the fact that 

multiple self-interested parties participate. Incentive-compatibility is an important 

property in order to select the efficient allocation in the presence of strategic bidders. 

Unfortunately, the well-known VCG mechanism requires exact solutions of the 

allocation problem, which is often intractable. The SMT is a case in point. It is NP-

hard and one cannot expect to solve this problem exactly for realistic problem sizes.  

 

There is an established literature of approximation algorithms for SMT problem. 

However, not all approximation algorithms can be extended to strategyproof 

approximation mechanisms. The best known algorithm by Robins and Zelikovsky 

violates monotonicity, a necessary condition for strategyproofness. However, the 

algorithms by  Mehlhorn [19] and the primal-dual algorithm by Goemans and 

Williamson [20] are monotonic. Adding a critical payment rule to these algorithms 

leads to polynomial-time and strategyproof 2-approximation mechanisms.  

We designed a deferred-acceptance auction for the SMT problem and analyzed 

several scoring functions. Overall, the results show that DAAs (foremost 𝐷𝐴𝐴𝑐) yield 

very good results (efficiency and cost) at low computation times. The DAA combines 

high average efficiency (as compared to MH, PD, and even RZ) with a low runtime 

compared to VCG. Moreover, the DAA is the only mechanism that offers weak 

group-strategyproofness. This property makes the DAA an appealing choice for 

network procurement applications, where collusion is an issue. While the worst-case 

approximation ratio can be quite low, the average-case solution quality is remarkably 

high, as shown in our numerical experiments based on the SteinLib.  

While the VCG mechanism is the approach an auctioneer should follow to 

minimize payments it experiences a steep increase in runtime as the number of 

terminals grows. For these instances, the MH mechanism exhibits low payments and 

runtime, but it is less efficient compared to others. 

Finally, it is important to note that the performance of the DAA is dependent on the 

scoring function. On average, the efficiency of algorithms with a scoring function 

based on betweenness centrality is very good and competitive with the best 

approximation algorithms for the SMT problem.  
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8 Appendix: Approximation Algorithms for the minimum 

Steiner tree 

In 8.1 we discuss loss-contraction algorithms on the basis of the algorithm by Robins 

and Zelikovsky [21], in Section 8.2 we consider distance-network based approaches, 

in Section 8.3 the primal-dual approximation, and in Section 8.4. the DAA. 

8.1 Loss-Contracting Approximation: The Algorithm by Robins and 

Zelikovsky 

Any Steiner tree 𝑆(𝐺, 𝐾) of 𝐺 is either a full Steiner tree, i.e., all its terminals are 

leaves, or can be decomposed into a forest of full Steiner subtrees (full components). 

A 𝑘-restricted full component 𝐹 is a full component with 𝑘 ≥ 3 terminals. By 𝐶𝑙[𝐹] 
we denote the loss-contracted full component of 𝐹. We define the gain and loss of a 

full component 𝐹 formally and then describe the execution of Algorithm 1 below. 

 

Definition 5 (Gain and Loss of a Full Component (Robins and Zelikovsky, 2005)) 

Let 𝑇 be a tree spanning 𝐾 and 𝐹 be an arbitrary full component of 𝐺 given 𝐾. Let 

𝑇[𝐹] be a minimum cost graph in 𝐹 ∪ 𝑇 which contains 𝐹 completely and spans all 

terminals in 𝐾. This means 𝑇[𝐹] is the result of replacing a part of the tree 𝑇 with the 

full component 𝐹. 

Then the Gain of 𝐹 w.r.t. 𝑇 is the cost difference between 𝑇 and 𝑇[𝐹]: 
𝑔𝑎𝑖𝑛𝑇(𝐹) = 𝑐𝑜𝑠𝑡(𝑇) − 𝑐𝑜𝑠𝑡(𝑇[𝐹])                                 (4) 

The Loss of 𝐹 is a minimum-cost subforest of 𝐹 containing a path from each Steiner 

point in 𝐹 to one of its terminals: 𝐿𝑜𝑠𝑠(𝐹) = 𝑀𝑆𝑇(𝐹 ∪ 𝐸0(𝐹)) \ 𝐸0(𝐹), where 𝐸0(𝐹) 

denotes a complete graph containing all terminals of 𝐹, with all edge costs being 0. It 

follows that  

𝑙𝑜𝑠𝑠(𝐹) = 𝑐𝑜𝑠𝑡(𝑀𝑆𝑇(𝐹 ∪ 𝐸0(𝐹)) \ 𝐸0(𝐹))                           (5) 

Data: 2-connected graph 𝐺 = (𝑉, 𝐸, 𝑏), terminal set 𝐾 ⊆ 𝑉, an integer 𝑘 with  

    3 ≤ 𝑘 ≤ |𝐾| 
Result: A 𝑘-restricted Steiner tree 𝑆(𝐺) in 𝐺 spanning 𝐾 

01 Compute 𝐺𝑉 and 𝐺𝐾 

02 𝑇 = 𝑀𝑆𝑇(𝐺𝐾) 

03 repeat 

04  Find a 𝑘-restricted full component 𝐹 maximizing 𝑟 = 𝑔𝑎𝑖𝑛𝑇(𝐹)/𝑙𝑜𝑠𝑠(𝐹) 

05  𝐺𝐾 = 𝐺𝐾 ∪ 𝐹 

06   𝑇 = 𝑀𝑆𝑇(𝑇 ∪ 𝐶𝑙[𝐹]) 

07 until 𝑟 ≤ 0 

08 𝑆(𝐺, 𝐾) = 𝑀𝑆𝑇(𝐺𝐾) 

09 Replace artificial edges in 𝑆(𝐺, 𝐾) 

10 Cut Steiner point leaves of 𝑆(𝐺, 𝐾) 

11 return 𝑆(𝐺, 𝐾) 

Algorithm 1: Approximation Allocation Algorithm 𝐴𝑅𝑍 
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The algorithm starts by computing the complete graph 𝐺𝑉 based on shortest paths, its 

subgraph 𝐺𝐾 induced by the terminal set 𝐾 (Line 1) and the MST on 𝐺𝐾 (Line 2). 

Afterwards, the gain-over-loss ratios for all 𝑘-restricted full components are 

computed. After choosing the full component with the highest gain-over-loss ratio, 

the selected component is added to 𝐺𝐾 (Line 5). The component is also added to 𝑇 in 

loss-contracted form 𝐶𝑙[𝐹] (Line 6). To contract the loss of a full component 𝐹, we 

merge every connected tree of the forest 𝐿𝑜𝑠𝑠(𝐹) into a single vertex, the respective 

terminal of the component. Two terminals are connected in 𝐶𝑙[𝐹] if their respective 

components in 𝐿𝑜𝑠𝑠(𝐹) have an adjacent edge in 𝐹 and the cost of the edge in 𝐶𝑙[𝐹] 
is equal to the cost of the respective edge in 𝐹. 

After 𝐶𝑙[𝐹] was added to 𝑇, an MST is built on 𝑇 ∪ 𝐶𝑙[𝐹]. By improving 𝑇 the 

gain-over-loss ratio for the remaining full components is decreasing. Eventually, all 

components will have a gain-over-loss ratio of at most zero. At this point, the 

algorithm computes the MST(𝐺𝐾) (Line 8), transforms all its artificial edges back into 

original edges, i.e. replaces artificial edges by the respective shortest path, and cuts 

leaves which are Steiner points (Lines 9, 10). 

8.2 Distance-Network-based Approximation: The Algorithm by Mehlhorn 

Mehlhorn's algorithm [19] partitions 𝐺 into Voronoi regions, which are then utilized 

to construct a subgraph of 𝐺𝐾, called �̅�, in the first phase. In the second phase, edges 

(shortest paths) in the MST are decomposed into edges in E, and a MST is computed 

on the resulting graph to remove possible cycles. Finally, in the third phase, non-

terminal leaves are deleted. We give definitions for Voronoi regions and �̅�, and 

provide a short pseudo code representation of the algorithm (Algorithm 2). 

 

Definition 6 (Voronoi Regions 𝑉(𝑠)) Given a general graph 𝐺 = (𝑉, 𝐸, 𝑏) and the 

set of terminals 𝐾 ⊆ 𝑉 , the Voronoi region 𝑉(𝑠) of a terminal 𝑠 ∈ 𝐾 contains all 

vertices 𝑣 ∈ 𝑉 for which the shortest path 𝑠𝑝(𝑠, 𝑣) ≤ 𝑠𝑝(𝑡, 𝑣) for all 𝑡 ∈ 𝐾. We break 

ties randomly, such that each vertex 𝑣 uniquely belongs to one such region. 

 

Definition 7 (Distance Network based on 𝑉) Let �̅� = (𝐾, 𝐸�̅� , 𝑏�̅�) be the distance 

network with edges and weights as follows:  

(𝑠, 𝑡) ∈ 𝐸�̅�  ⇔ ∃ (𝑢, 𝑣) ∈ 𝐸 such that 𝑢 ∈ 𝑉(𝑠) and 𝑣 ∈ 𝑉(𝑡) (6) 

𝑏�̅�(𝑠, 𝑡) = 𝑚𝑖𝑛{𝑠𝑝(𝑠, 𝑢) + 𝑏(𝑢, 𝑣) + 𝑠𝑝(𝑣, 𝑡): 𝑢 ∈ 𝑉(𝑠), 𝑣 ∈ 𝑉(𝑡), (𝑢, 𝑣) ∈  𝐸}  (7) 

 

Data: 2-connected graph 𝐺 = (𝑉, 𝐸, 𝑏), terminal set 𝐾 ⊆ 𝑉 

Result: A Steiner tree 𝑆(𝐺, 𝐾) in 𝐺 spanning 𝐾 

01 Compute Voronoi regions of 𝐺 and generate �̅� 

02 𝑆(𝐺, 𝐾) = 𝑀𝑆𝑇(�̅�) 

03 Replace artificial edges in 𝑆(𝐺, 𝐾) 

04 Cut non-terminal leaves of 𝑆(𝐺, 𝐾) 

05 return 𝑆(𝐺, 𝐾) 

Algorithm 2: Approximation Allocation Algorithm 𝐴𝑀𝐻 
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8.3 Primal-Dual Approximation Algorithms 

This section describes the general approach for primal-dual approximations and the 

approximation algorithm for the minimum Steiner tree problem by Goemans and 

Williamson [20]. Many problems in graph theory can be reduced to the hitting set 

problem. For a groundset 𝐸 with cost 𝑐𝑒 ≥ 0 for every element 𝑒 ∈ 𝐸 and subsets 

𝑇1, 𝑇2 . . . 𝑇𝑛 ⊆ 𝐸, the hitting set problem is to find a subset 𝐴 ⊆ 𝐸 of minimal cost 

such that 𝐴 ∩ 𝑇𝑖 ≠ ∅ for all subsets 𝑖 = {1, . . . 𝑛}. The primal integer program for the 

hitting set problem can be formulated as follows: 

Min ∑ 𝑐𝑒𝑥𝑒𝑒∈𝑒  

subject to ∑ 𝑥𝑒 ≥ 1, ∀𝑖𝑒∈𝑇𝑖
 

      𝑥𝑒 ∈ {0,1} 

To obtain the relaxation, simply the constraint 𝑥𝑒 ∈ {0, 1} needs to be relaxed to 𝑥𝑒 ≥
0. The corresponding dual program is stated below: 

Max ∑ 𝑦𝑖𝑖  

subject to ∑ 𝑦𝑖 ≤ 𝑐𝑒 ,   ∀𝑒 ∈ 𝐸𝑖:𝑒∈𝑇𝑖
 

        𝑦𝑖 ≥ 0   ∀𝑖 

To obtain an 𝛼-approximation we compute a solution �̅� to the primal integer program 

and a solution 𝑦 to the dual of the relaxed primal program such that ∑ 𝑐𝑒�̅�𝑒 ≤𝑒∈𝐸

𝛼 ∑ 𝑦𝑖
𝑛
𝑖=1 . 

Mapping the hitting set problem to the minimum Steiner tree problem is 

straightforward: the ground-set is given by the edges 𝐸 of the graph and 𝑐𝑒 is the cost 

of the respective edge 𝑒 ∈ 𝐸. Let 𝑆𝑖 be a subset of vertices that contains at least one, 

but not all terminals, i.e. a cut. When all cuts are crossed, the solution is a feasible 

allocation for the minimum Steiner tree problem. By definition, the edges adjacent to 

exactly one vertex 𝑣 ∈ 𝑆𝑖 are the edges crossing the cut 𝑆𝑖. Let 𝛿(𝑆𝑖) denote the set of 

these edges. Let 𝑇𝑖 = 𝛿(𝑆𝑖). 

Algorithm 3 describes the necessary steps to compute 𝐴. During the initialization, 

𝐴 is empty and all dual variables 𝑦 are set to 0 (Lines 1, 2). In each iteration, we 

compute 𝑈 to contain all 𝑇𝑘 that are unsatisfied and minimal, i.e. there is no 

unsatisfied set 𝑇𝑗 with 𝑇𝑗 ⊂ 𝑇𝑘 (Line 5). Afterwards, the dual variables 𝑦𝑘  

corresponding to set in 𝑈 are increased (loaded) until one of the constraints holds with 

equality (it goes ”tight”, Line 6). The corresponding element 𝑒 is then added to the 

solution. If the allocation 𝐴 is feasible, the algorithm stops and conducts a reverse 

deletion (Lines 9 – 14). In this phase, edges are assessed in regard to their necessity in 

reversed order (LIFO). Unnecessary edges either connect a Steiner point as a leaf or 

close a cycle. In either case, the edge is not contributing to the solution (apart from 

inflicting costs). Finally, the solution is returned. 
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Data: 2-connected graph 𝐺 = (𝑉, 𝐸, 𝑏), terminal set 𝐾 ⊆ 𝑉 

Result: A Steiner tree 𝑆(𝐺) in 𝐺 spanning 𝐾 

01 𝑦 = 0 ∀𝑦 

02 𝐴0 = ∅ 

03 𝑖 = 0 

04 while 𝐴𝑖 not feasible do 

05  Choose violated sets 𝑈 
06  Increase 𝑦𝑘 uniformly for all 𝑇𝑘 ∈ 𝑈 until ∃𝑒𝑖 ∉ 𝐴𝑖 s.t. ∑ 𝑦𝑖𝑖:𝑒𝑖∈𝑇𝑖

= 𝑐𝑒𝑖 
 

07  𝐴𝑖 = 𝐴𝑖 ∪ {𝑒𝑖} 
08  𝑖 = 𝑖 + 1 

09 end 

10 𝐴′ = 𝐴𝑖−1 

11 for 𝑖;  𝑖 ≥ 0; 𝑖 = 𝑖 − 1 do 
12  if 𝐴’ ∖ {𝑒𝑡𝑖

} still feasible then 

13   𝐴’ = 𝐴’ ∖ {𝑒𝑡𝑖
} 

14  end 

15 end 

16 return 𝐴′ 

Algorithm 3: Approximation Allocation Algorithm 𝐴𝑃𝐷 

8.4 Deferred Acceptance Auctions for Steiner Trees 

The DAA greedily excludes the least desirable option from the solution until further 

removal would lead to an infeasible solution. Algorithm 4 shows an implementation 

of the DAA for the Steiner tree problem. To decide which option should be excluded 

in each iteration a scoring function is used. In each iteration, the scoring function 

assigns a value of at least 0 to an edge 𝑒 (Line 2) based only on the cost of 𝑒 itself and 

what other options are still available (ignoring the other options’ costs, however). 

Edges that cannot be removed without making the resulting solution infeasible receive 

a score of 0. When a score of 0 is assigned to an edge the first time we compute the 

payment 𝑝(𝑒) (Lines 3, 4) This payment is equal to the cost 𝑒 could have stated such 

that her score would have been equal to an edge that was removed in the last iteration 

before her score was set to 0. If there are edges with a positive score left the highest 

scoring edge is removed from the solution (Line 9), otherwise the algorithm 

terminates. 
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Data: 2-connected graph 𝐺 = (𝑉, 𝐸, 𝑏), terminal set 𝐾 ⊆ 𝑉, scoring function 𝑠 

Result: A Steiner tree in 𝐺 spanning 𝐾 

01 for each edge 𝑒 do 

02  assign score 𝑠(𝑒) to 𝑒 

03  if 𝑠(𝑒) = 0 then 

04   compute payment 𝑝(𝑒) 

05  end 

06  if highest score equals 0 then 

07   return remaining edges (Steiner tree) 

08  end 

09  remove 𝑒 with the highest score 

10 end 

11 return remaining edges 

Algorithm 4: Deferred-Acceptance Auction 
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