
15th International Conference on Wirtschaftsinformatik,

March 08-11, 2020, Potsdam, Germany

Incentive-Compatible Auction Mechanisms for Network

Procurement

Martin Bichler1, Richard Littmann2, and Stefan Waldherr1

1 Technical University of Munich, Decision Sciences & Systems, Munich, Germany;

2 Technical University of Munich, Advanced Optimization in a Networked Economy

(AdONE), Munich Germany;

{bichler, littmann, waldherr}@in.tum.de

Abstract. The allocation of scarce resources is an important task in information

systems. We focus on network procurement where a telecommunications

provider aims to connect specific nodes in a network. To establish connection

between nodes, the provider needs to buy the respective edge. In this strategic

version of the Steiner Minimum Tree problem the edges are owned by bidders

with private costs. Thus, in order to find an efficient solution, a mechanism that

incentivizes participants to state their costs truthfully and runs in polynomial

time is required. Recently, deferred-acceptance auctions have been proposed to

solve NP-hard allocation problems. We implement several approximation

mechanisms and provide an extensive experimental analysis comparing the

average-case solution quality of deferred-acceptance algorithms with that of

traditional approximation algorithms. We find that deferred-acceptance

algorithms are comparable or even outperform the best approximation

algorithms on instances from the SteinLib test data collection.

Keywords: Steiner tree problem, approximation mechanism, deferred-

acceptance auction

1 Introduction

Many information systems nowadays are designed to coordinate activities or allocate

scarce resources. The design of respective information systems has a number of

challenges because incentives of the participants need to be considered, but also

computational problems play a role. This has led to a fruitful line of research on the

design of electronic markets [1-5].

We focus on a specific market design application, the procurement of networks and

aim for auction mechanisms that lead to efficient outcomes and exhibit simple

strategies for the suppliers to bid truthful. Such mechanisms are also referred to as

implementable, incentive compatible, or strategyproof, in case bidders even have a

dominant strategy. The Vickrey-Clarke-Groves (VCG) mechanism is the unique

strategyproof and efficient mechanism, and its generality is remarkable [6].

Unfortunately, the VCG mechanism requires the auctioneer to solve the allocation

https://doi.org/10.30844/wi_2020_c4-bichler

problem exactly. This cannot be expected in large NP-hard resource allocation

problems.

There is significant literature in the design of approximation algorithms for

computationally hard problems [7]. Algorithmic mechanism design extends this

literature in an important way [6]. The goal of approximation mechanisms is to design

algorithms that run in polynomial time and satisfy strong game-theoretical

equilibrium solution concepts such that bidders have incentives to reveal their

valuations truthfully and the auctioneer can determine the optimal allocation or one

that approximates the optimal solution. Typically, designers of approximation

mechanisms aim for dominant-strategy incentive compatibility or strategyproofness.

Such mechanisms are prior-free and truthful bidding is a dominant strategy for

individual bidders.

Network procurement is a prime application where auction mechanisms play an

important role in business practice. A telecommunication company is interested in

connecting several sites or terminals via a cost-minimal set of edges connecting

vertices in a network. The terminals constitute a subset of all vertices in the network

and suppliers can provide individual edges in the network at certain cost. The Steiner

Minimum Tree problem (SMT) is a well-known model of this network procurement

problem. Even with complete information about suppliers' costs, finding a cost-

minimal solution is NP-hard. The SMT problem on graphs is one of the most well-

known NP-complete problems [8], and central in various types of network design

problems, which have received significant attention in operations research [9-11].

In the procurement environment, the costs of establishing a link is the private

information of its supplier. Each supplier wants to maximize her payoff, i.e., her bids

minus her private cost for setting up the connection. In such an auction, the auctioneer

wants to set incentives for bidders to reveal their costs truthfully. Since the SMT

problem is NP-complete, its optimal solution, which corresponds to the maximally

achievable social welfare, cannot be expected to be obtained in reasonable time.

This paper reviews several well-known approximation algorithms for the SMT

problem in settings where the edges of the graph are strategic agents. Based on well-

known theory from mechanism design, we extend these approximation algorithms to

strategyproof mechanisms, if possible.

[12] and [13] recently proposed deferred-acceptance auctions (DAAs), a class of

greedy algorithms which are weakly group-strategyproof for bidders with single-

dimensional types. This means, even a coalition of bidders cannot manipulate

profitably via deviations from truthful bidding, which makes them robust against

collusive bidding strategies. This is a very desirable property in many applications.

Also, a deferred-acceptance auction can be implemented both as a sealed-bid and as a

clock auction and it was recently characterized as obviously strategyproof [14],

indicating that it is obvious for a player that the best outcome achievable by lying

cannot be better than the worst outcome from telling the truth.

An important question is, whether these strong incentive properties are at the

expense of solution quality, i.e. they might lead to low allocative efficiency. [15]

studied this question from a worst-case approximation perspective. Interestingly,

experimental analysis of the specific allocation problem showed very high solution

https://doi.org/10.30844/wi_2020_c4-bichler

quality on average [16]. The allocation problem under consideration is quite specific

and it is not clear whether one could achieve high average efficiency with a DAA also

for other problems.

In our analysis, we start with the best known approximation algorithm by [21],

before we analyze the approach by [19], and primal-dual algorithms [20]. These are

arguably the most prominent approaches to the SMT problem in the literature.

We then compare these results to those of deferred-acceptance auctions, which

were introduced by Milgrom and Segal [12]. We conclude that the practical

performance of deferred acceptance algorithms, whilst having worse worst-case

performance guarantees, perform well in practical implementations.

In Section 2 we introduce related literature, before we introduce the SMT and

relevant definitions in Section 3. In Section 4 we discuss well-known approximation

algorithms for the SMT problem, and a critical payment scheme, before we introduce

deferred acceptance auctions. Then, in Section 5 the results of numerical experiments

based on the SteinerLib are presented.

2 Related Literature

Approximation algorithms based on distance networks were proposed by [17] and

[18]. Mehlhorn [19] developed a faster variant of the latter algorithm. All algorithms

in this class achieve an approximation ratio of 2, which is also achievable by means of

primal-dual algorithms, see e.g. [20].

Loss-contracting approximations are another class of algorithms studied in the

context of the SMT problem. This approach has been improved in a series of papers.

The algorithm due to Robins and Zelikovsky [21] currently reaches the best

approximation ratio of 1.55. Byrka, Grandoni, Rothvoß and Sanità [22] proposed a

randomized technique that achieves an approximation ratio of ln(4) + 𝜖, i.e. 1.39 in

the limit. While the algorithm can be de-randomized to obtain a deterministic

approximation algorithm with polynomial time complexity, the polynomial and

constants required to reach the approximation factor of 1.39 result in a runtime which

is not feasible in practice.

Since randomized approximation algorithms are often not acceptable in industrial

procurement we focus on the design of deterministic approximation mechanisms.

While there is no general framework to transform deterministic approximation

algorithms into strategyproof mechanisms, there exist quite general approaches when

additional conditions on bidders' valuations are met. Single-mindedness has received

most attention in the literature on combinatorial auctions [11]. In this case bidders are

only interested in one specific subset of items (package). This can be a reasonable

assumption for many real-world markets and it is a very good starting point for our

analysis of strategyproof approximation mechanism for the SMT problem on graphs.

In the context of network procurement, we talk about bidders with single-

dimensional types, which means each supplier only having access to a single link

which she can sell. In many markets, bidders know little about the cost structures of

https://doi.org/10.30844/wi_2020_c4-bichler

competitors, and the analysis of the single-dimensional case can still lead to

practically viable and robust mechanisms even if the assumption is not fully satisfied.

3 Notation and Definitions

Let G = (V, E, c) be a weighted, connected graph, where ce is the cost of each edge

𝑒 ∈ 𝐸. For a subset of edges 𝐹 ⊆ 𝐸, the cost of the edge-induced subgraph is defined

by 𝑐(𝐹) = ∑ 𝑐𝑒{𝑒∈𝐹} . A spanning tree of 𝐺 is a subset of edges of 𝐸 such that the

resulting edge-induced subgraph is connected, cycle-free and contains all vertices 𝑉.

The minimum spanning tree, denoted by MST(G) is a spanning tree where the sum of

the costs of its edges is minimal in comparison to all other spanning trees.

The SMT problem on a connected graph 𝐺 = (𝑉, 𝐸, 𝑐) is defined as follows. For a

subset of vertices 𝐾 ⊆ 𝑉 called terminals, any tree spanning 𝐾 is called a Steiner

tree. Any vertex in a Steiner tree which is not a terminal is called a Steiner point. We

refer to the set of all Steiner trees over 𝐺 as 𝑆𝑡𝑇(𝑉, 𝐸). The objective then is to find a

minimum cost Steiner tree.

Let 𝐺𝑉 be the complete graph induced by the vertex set 𝑉, i.e., a complete

weighted graph 𝐺𝑉 = (𝑉, 𝐸𝑉 , 𝑐𝑉), where each edge cost equals the cost of the shortest

path in 𝐺 between the two adjacent vertices of that edge. 𝐺𝑉 is then a metric graph

satisfying the triangle inequality. We call 𝐺𝑉 the distance network of the graph 𝐺.

Likewise, 𝐺𝐾 denotes the distance network induced by the terminal set 𝐾, 𝐺𝐾 =
(𝐾, 𝐸𝐾 , 𝑐𝐾). Note that 𝐺𝐾 ⊆ 𝐺𝑉, as 𝐾 ⊆ 𝑉.

In the following, we describe the design of mechanisms for the SMT problem. We

consider a set of bidders 𝑁, where each bidder 𝑖 only provides one specific single

edge 𝑒𝑖. With slight abuse of notation, we also denote with E the set of bidders, with

𝑐𝑖 the true cost of bidder 𝑖 while 𝑐 refers to the corresponding tuple (𝑐𝑖){𝑖∈𝑁} taken

over all bidders. Denote with 𝐵𝑖 the domain of bids, 𝑖 can report as her cost for edge

𝑒𝑖, e.g. 𝐵𝑖 = ℝ≥ 0 and let 𝐵 = ∏𝑖∈𝑁 𝐵𝑖. For a single-dimensional bidder 𝑖 there is a

unique and publicly known edge 𝑒𝑖 ∈ 𝐸 such that her true private cost is 𝑐𝑖 only for

edge 𝑒𝑖 , while for all other edges 𝑒𝑗 ≠ 𝑒𝑖 her true private cost is ∞. Given a vector of

reported bids 𝑏 ∈ 𝐵 with 𝑏 = (𝑏𝑖)𝑖∈𝐸, the expression 𝑏−𝑖 denotes the bid tuple

without the 𝑖-th entry, 𝑏−𝑖 = (𝑏𝑗)
𝑗∈𝐸\{𝑖}

, and (𝑐𝑖 , 𝑏−𝑖) denotes the bid tuple where

the 𝑖-th entry of 𝑏 is replaced by 𝑐𝑖, i.e., bidder 𝑖 reports her true cost.

A deterministic mechanism ℳ = (𝑓, 𝑝) for the SMT problem over vertices 𝑉 and

edges 𝐸 is defined by a deterministic allocation function {𝑓 ∶ 𝐵 → 𝑆𝑡𝑇(𝑉, 𝐸)} and a

payment scheme 𝑝𝑖 ∶ 𝐵 × 𝑆𝑡𝑇(𝑉, 𝐸) → ℝ for each bidder 𝑖. Given the bidders'

reported bids 𝑏 ∈ 𝐶, the mechanism ℳ = (𝑓, 𝑝) computes a Steiner tree 𝑓(𝑏) and

pays each bidder 𝑖 a payment of 𝑝𝑖(𝑏, 𝑓(𝑏)). In an approximation mechanism, the

allocation function 𝑓 is implemented via a deterministic approximation allocation

algorithm 𝒜. A mechanism with an approximation allocation algorithm 𝒜 achieves

an approximation ratio of 𝑟 for SMT if

max
𝑏∈𝐵

𝑐(𝑂𝑃𝑇(𝑏))

𝑐(𝒜(𝑏))
≤ 𝑟 (1)

https://doi.org/10.30844/wi_2020_c4-bichler

where 𝑂𝑃𝑇(𝑏) denotes a welfare-maximizing allocation (i.e. an optimal SMT given

costs 𝑏), 𝑐(𝑂𝑃𝑇(𝑏)) the corresponding social welfare (i.e. cost of the Steiner tree),

and 𝑐(𝒜(𝑏)) the welfare achieved with the approximation algorithm 𝒜.

Since bidders are self-interested, their reported bids 𝑏 do not necessarily reflect

their true costs 𝑐. Instead, bidders try to maximize their quasilinear utilities 𝑢𝑖, i.e.,

payment received minus true cost: 𝑢𝑖(𝑏) = 𝑝𝑖(𝑏, 𝑓(𝑏)) − 𝑐𝑖. As a result, a

strategyproof mechanism must offer bidders some incentives to reveal their true costs.

Definition 1: Strategyproofness A mechanism ℳ = (𝑓, 𝑝) is strategyproof if for

all bidders 𝑖 ∈ 𝐸 and all reported bid tuples 𝑏 ∈ 𝐵 it holds that bidder 𝑖 has a weakly

higher payoff by telling the truth:

𝑢𝑖(𝑐𝑖 , 𝑏−𝑖) ≥ 𝑢𝑖(𝑏) (2)

We also consider the stronger criterion of weak group-strategyproofness, where it is

impossible for a group of bidders to make all members of the group better off by

lying.

Definition 2 : Weak Group-Strategyproofness1 A mechanism ℳ = (𝑓, 𝑝) is

weakly group-strategyproof if for every set of bidders 𝐼 ⊆ 𝐸 and all reported bid

tuples 𝑏 ∈ 𝐵 it holds that at least one bidder 𝑖 ∈ 𝐸 has a weakly higher payoff by

telling the truth:

𝑢𝑖(𝑐𝐼 , 𝑏−𝐼) ≥ 𝑢𝑖(𝑏) (3)

Finally, to avoid monopoly, we restrict 𝐺 to be 2-edge-connected, i.e., 𝐺 remains

connected even if any single edge is removed.

With this, we can now formulate the SMT problem as a mechanism design

problem: Let 𝐺 = (𝑉, 𝐸, 𝑏) be a 2-edge-connected graph. |𝑉| is the number of

vertices, |𝐸| is the number of edges/bidders, and 𝑏 is the vector of reported bid prices.

Let 𝐾 ⊆ 𝑉 be the set of terminals. Then the objective is to design a polynomial time

approximation mechanism which computes an approximately efficient allocation 𝐴,

and a payment scheme 𝑝 which makes truthful bidding a dominant strategy, such that

𝑝 and 𝐴 form a strategyproof mechanism.

Definition 3: Monotonic allocation rule An allocation rule 𝑓 of a mechanism

ℳ = (𝑓, 𝑝) is monotonic if a bidder 𝑖 who wins with bid 𝑏𝑖 keeps winning for any

lower bid 𝑏𝑖
′ < 𝑏𝑖 (for any fixed settings of the other bids).

Definition 4: Critical payment scheme A payment scheme 𝑝 of a mechanism

ℳ = (𝑓, 𝑝) is critical if a winning bidder 𝑖 receives payment 𝑝𝑖
∗, which is her

maximum bid allowed for winning: 𝑝𝑖
∗ ∶= sup {𝑏𝑖

′ ∈ 𝐵𝑖 ∶ 𝑖 ∈ 𝐴(𝑏𝑖
′, 𝑏−𝑖)}, where

𝐴(𝑏𝑖
′, 𝑏−𝑖) denotes the set of bidders that would have won if the reported bids were

(𝑏𝑖
′, 𝑏−𝑖).

1 Note that generally, threshold or clock auctions are not strongly group-strategyproof as

pointed out in [12] .

https://doi.org/10.30844/wi_2020_c4-bichler

In his seminal paper, Myerson [23] showed that an allocation rule 𝑓 is implementable

(i.e. there exists a payment vector 𝑝 such that ℳ = (𝑓, 𝑝) is strategyproof) if and

only if the allocation rule is monotonic. Moreover, if the allocation rule is monotonic

and losing bidders pay 0, a critical payment scheme is the unique payment rule 𝑝 such

that ℳ = (𝑓, 𝑝) is strategyproof. Hence, with single-dimensional types and

monotonic approximation algorithms, we can implement an outcome in dominant

strategies, if we compute critical payments.

4 Approximation Mechanisms for Single-Dimensional Bidders

In this section we briefly introduce important approximation algorithms for the

SMT problem and provide a corresponding critical payment scheme. Finally, we

design a deferred-acceptance auction for the SMT problem.

4.1 Approximation Algorithms for the Steiner Minimum Tree

Loss-Contracting Algorithms Loss-contracting algorithms have been the most

successful approach to the design of approximation algorithms for the SMT on graphs

so far.

Any Steiner tree 𝑆(𝐺, 𝐾) of 𝐺 is either a full Steiner tree, i.e., all its terminals are

leaves, or can be decomposed into a forest of full Steiner subtrees (full components)

by splitting all the non-leaf terminals (splitting a terminal results in two copies of the

same terminal). The algorithm by Robins and Zelikovsky [21] builds an 𝑀𝑆𝑇 on the

subgraph 𝐺𝐾 induced by the terminal set 𝐾 and repeatedly adds full components to

improve the temporary solution. In each iteration, full components are ranked

according to their gain (by how much the component improves the current temporary

solution) divided by their loss (i.e., the cost committed by adding a component or

more precisely its Steiner points). After a full component is added, the temporary

solution is improved. This step also involves loss-contracting, a method to make

components which are in conflict with added ones less appealing. By these means, the

algorithm by Robins and Zelikovsky [21] achieves an approximation ratio of 1.55 if

𝑘 → ∞ and it is computable in 𝒪(|𝐾|𝑘 ⋅ |𝑉 − 𝐾|𝑘−2 + 𝑘 ⋅ |𝐾|2𝑘+1 log (|𝐾|)). This is

the best approximation algorithm so far, but unfortunately it is not monotonic.

Distance-Network-based Approximations Similarly to the loss-contracting

approximation, the general idea of distance-network-based approximation algorithms

is to build a 𝑀𝑆𝑇 on a complete subgraph 𝐺𝐾 in the first phase. In the second phase,

edges in 𝑀𝑆𝑇(𝐺) are re-transformed back to edges in 𝐺, and an 𝑀𝑆𝑇 is computed on

the resulting graph to remove possible cycles. Finally, in the third phase, non-terminal

leaves are deleted. This algorithm was proposed by Kou, Markowsky and Berman

[18] and runs in 𝒪(|𝐾||𝑉|2). However, due to the cycles that can occur in the first

phase, this standard variant is not monotonic. Mehlhorn [19] designed an algorithm

which differs in phase 1. Here, the algorithm first partitions 𝐺 into Voronoi regions,

https://doi.org/10.30844/wi_2020_c4-bichler

which are then utilized to construct a subgraph of 𝐺𝐾, called 𝐺. It then proceeds with

phase 2 and phase 3. This leads to a worst case run time of 𝒪(|𝑉| log |𝑉| + |𝐸|) and

achieves an approximation ratio of 2(1 − 1/𝑙) where 𝑙 is the minimal number of

leaves in any SMT (which is naturally bounded above by the number of terminals). It

can be shown that the modification of phase 1 leads to a monotonic allocation.

Primal-Dual Approximation Algorithms The approximation algorithm for the SMT

problem by Goemans and Williamson [20] follows a primal-dual approach which

requires a runtime of 𝒪(|𝑉|2 \𝑙𝑜𝑔 |𝑉|), also has an approximation ratio of 2 and is

monotonic.

4.2 Payment Schemes

Since the allocations of the algorithms 𝐴𝑀𝐻 by Mehlhorn [19] and the primal-dual

algorithm 𝐴𝑃𝐷 by Goemans and Williamson [20] are monotonic, they can be extended

to a strategyproof approximation mechanism. To achieve this, the payment scheme 𝑝

needs to find the critical payment 𝑝𝑖
∗ for any winner 𝑖, such that every reported bid 𝑏𝑖

with 𝑏𝑖 ≤ 𝑝𝑖
∗ is guaranteed to win, while every reported bid 𝑏𝑖 with 𝑏𝑖 > 𝑏𝑖

∗ is

guaranteed to lose.

Gualà and Proietti [24] proposed a payment scheme which can be computed in

𝒪((|𝑉| + |𝐾|2)|𝐸| ⋅ log 𝛼(|𝐸|, |𝑉|)) for distance-network based approximation

algorithms. In this approach the critical payment for 𝑒 is calculated by adding the

difference between the original cost of the shortest path including 𝑒 and the minimum

cost of one of the alternative shortest paths without 𝑒 which can be efficiently

computed using several tweaks [24-26]. Computation of an alternative path in the

distance network between two different terminals 𝑣1
′ , 𝑣2

′ can also be done efficiently

by standard sensitivity analysis [27]. For the PD algorithm, a possibility of obtaining

critical payments is by using binary search.

Since the payments described above are critical, they can be used in combination

with their corresponding approximation algorithm to yield a strategy-proof

approximation mechanism for single-dimensional bidders [23].

4.3 Deferred-Acceptance Auctions

Greedy algorithms are an important class of approximation algorithms. A greedy-in

algorithm iteratively chooses the best available option based on the current state (i.e.,

the previous iterations) and adds it to the solution. Contrarily, in the deferred-

acceptance auction (DAA), a greedy-out algorithm is used which removes the least

favourable alternative from the solution in every iteration.

A greedy-in procedure which greedily accepts edges is not suitable for constructing

a Steiner tree, since greedily accepting edges leads to being forced to 'correct' the

structure afterwards (e.g.. assuring that Steiner points do not end up as leaves) while

within a greedy-out procedure one only needs to assure that it is still possible to

construct a Steiner tree based on the remaining edges (i.e. all terminals are still

connected). Thus this section describes a greedy-out approximation for the Steiner

https://doi.org/10.30844/wi_2020_c4-bichler

tree problem implemented as a DAA [12]. The DAA is not only strategyproof but also

weakly group-strategyproof and therefore provides a form of protection against bidder

collusion.

The DAA greedily excludes the least desirable option from the solution until

further removal would lead to an infeasible solution. To decide which option should

be excluded in each iteration a scoring function is used. A scoring function assigns a

value of at least 0 to an option 𝑖 based only on the cost of 𝑖 itself and what other

options are still available (ignoring the other options’ costs, however). In each

iteration, an option with the highest assigned score is removed from the allocation,

options that cannot be removed without making the resulting solution infeasible

receive a score of 0. All remaining options with a score of 0 are accepted in the end.

Hence, the algorithm always returns a feasible Steiner tree at the end.

The payment 𝑝(𝑒) for an option 𝑖 is calculated the moment we cannot exclude 𝑖
from the solution any more, i.e. the moment we assign a score of 0 to it. The payment

is equal to the bid 𝑖 could have stated such that her score would have been equal to an

option that was removed in the last iteration before her score was set to 0.

In a network procurement context, the set of options is the set of edges 𝐸. An edge

cannot be excluded from the solution if its removal would lead 𝐺 to split into two

separate connected components, each of which contains at least one terminal. To

account for the specific requirements of the network procurement context, we analyze

three scoring functions in our experimental analysis:

1. the weight of the edge

2. the weight of the edge divided by the number of adjacent edges

3. the weight of the edge divided by the edge betweenness centrality of the edge,

where all pairs of vertices are considered

We calculate betweenness centrality by using an algorithm due to Brandes [28] on a

variant 𝐺𝑢 of 𝐺 where all edges have weight 1, i.e. 𝐺𝑢 is the unweighted version of 𝐺.

This is necessary, since due to incentive reasons a scoring function may only take the

respective bid and the underlying graph structure into account, not the bids of other

active bidders. Since in our environment bids are the cost of edges, when calculating

the score of an edge 𝑒, we must ignore the costs of all other edges 𝑒′ ≠ 𝑒 in our

calculations. In the following, let 𝐷𝐴𝐴𝑤 (𝐷𝐴𝐴𝑎; 𝐷𝐴𝐴𝑐) denote the DAA with scoring

by weight (divided by adjacent edges; betweenness centrality). The DAA for the SMT

problem runs in 𝒪(|𝐸|3 + |𝐸|2|𝑉| + |𝐸|𝑡) including payment calculation where 𝑡 is

the time necessary to update the scores in each iteration.

Greedy algorithms are usually fast, but can lead to arbitrarily bad results compared

to an optimal solution for some problems. For knapsack auctions and general

combinatorial auctions with single-minded bidders, both of which are maximizing

social welfare, [15] prove approximation ratios for the allocation algorithms used in

their DAAs. However, their techniques are not directly applicable to the network

procurement setting. For instance, consider the three weight functions discussed

above and a network as given in Figure 1. The network consists of n nodes 𝑣1, … , 𝑣𝑛,

two of which (𝑣1 and 𝑣𝑛) are terminals. The optimal Steiner Tree consists of only

keeping edge (𝑣1, 𝑣𝑛), but under DAA this edge is rejected first under all weight

https://doi.org/10.30844/wi_2020_c4-bichler

functions, forcing the algorithm to accept all other 𝑛 − 1 edges in order to remain

connected. This leads to an approximation ratio of (𝑛 − 1)/2 proving the

impossibility of a constant-factor approximation ratio. It remains an open question

whether there exists a weight function that allows for such an approximation ratio,

however this seems doubtful.

Figure 1. An example where DAA leads to an approximation ratio of (n-1)/2

5 Experimental Evaluation

We describe the data set before we discuss our results. All algorithms were

implemented in Java. The experiments were executed on a laptop with Intel core i5-

6600k (4 cores, 3.5 GHz) and 8GB RAM.

For the approximation mechanism based on [19] and the primal-dual algorithm

[20], we computed the payments as described in Section 4.2. For the former, we

employed the payment scheme for distance-network based approximation algorithms

by Gualà and Proietti [24] and for the latter we calculated the payments based on

binary search. For the DAA we use the threshold payments which are dynamically

updated throughout the run of the algorithm as described in Section 4.3. Finally, we

also included the VCG mechanism [29-31] as a baseline. We used the send-and-split

method [32] as implemented by Iwata [33] to determine optimal solutions.

5.1 Data

Experiments are conducted on set I080 of the SteinLib Testdata Library [34]2.

However, instances which are not 2-edge-connected are not considered since a

monopoly edge would be worth infinite amounts of money. Instances with names

ending on 0𝑥 or 3𝑥 are thus not considered, which leaves us with 60 instances all of

which have 80 vertices. We cluster instances with the same number of terminals and

edges, this gives twelve clusters consisting of five instances each. As a summary, only

the mean values for each cluster are reported in this section. The full list of results is

provided in the appendix. Overall, we have 60 instances and 6 algorithms resulting in

360 experiments.

2 http://steinlib.zib.de/showset.php?I080

https://doi.org/10.30844/wi_2020_c4-bichler

5.2 Results

Allocative Efficiency. In Table 2 and Table 3, we present the mean efficiency of the

five instances for each of the twelve terminal-edge combinations we considered in our

experimental evaluation. While the approximation algorithm by Robins and

Zelikovsky [21] is not monotonic and thus cannot be extended to an approximation

mechanism, it is still interesting to compare its allocation efficiency to the other

algorithms in a complete information setting. Overall, 𝐷𝐴𝐴𝑐 and 𝑅𝑍 were the best

performing algorithms and the scoring function based on the betweenness centrality

came out to be the best scoring function for DAAs. With a paired Wilcoxon rank sum

test the differences in efficiency between 𝐷𝐴𝐴𝑎 and 𝑅𝑍 (𝑝 = 0.88), between 𝐷𝐴𝐴𝑐

and 𝑅𝑍 (𝑝 = 0.0005), and those between 𝑀𝐻 and 𝑃𝐷 (𝑝 = 0.155) were not

significant at 𝑝 < 0.0001, while all other pairwise comparisons were significant at

this level. We also analyse differences in efficiency using a linear regression with

efficiency as dependent variable, the algorithm, the number of edges and terminals as

covariates. With the 𝐷𝐴𝐴𝑐 as baseline, the differences to this greedy algorithm were

positive and significant at the following levels: 𝐷𝐴𝐴𝑤 (𝑝 < 0.0001), 𝑀𝐻 (𝑝 <
0.0001), 𝑃𝐷 (𝑝 < 0.0001), 𝐷𝐴𝐴𝑎 (𝑝 < 0.01), and 𝑅𝑍 (𝑝 < 0.01).

Table 2. Average efficiency

E,K 350,6 3160,6 632,6 350,8 3160,8 632,8

𝑅𝑍 (k=3) 1.07 1.23 1.13 1.11 1.26 1.17

𝑀𝐻 1.16 1.26 1.30 1.29 1.31 1.34

𝑃𝐷 1.15 1.26 1.28 1.31 1.31 1.33

𝐷𝐴𝐴𝑤 2.27 2.27 2.19 2.25 2.40 2.13

𝐷𝐴𝐴𝑎 1.21 1.47 1.27 1.17 1.35 1.19

𝐷𝐴𝐴𝑐 1.30 1.14 1.24 1.18 1.10 1.16

Table 3. Average efficiency (continued)

E,K 350,16 3160,16 632,16 350,20 3160,20 632,20

𝑅𝑍 (k=3) 1.19 1.30 1.24 1.21 1.32 1.24

𝑀𝐻 1.25 1.39 1.30 1.30 1.40 1.33

𝑃𝐷 1.26 1.39 1.30 1.31 1.40 1.32

𝐷𝐴𝐴𝑤 1.67 1.85 1.83 1.59 1.71 1.54

𝐷𝐴𝐴𝑎 1.14 1.26 1.11 1.11 1.18 1.10

𝐷𝐴𝐴𝑐 1.16 1.06 1.10 1.11 1.06 1.08

Let us now report averages for different subgroups of the experiments in more detail.

The algorithm by Robins and Zelikovsky performs best for sparse instances, on

average finding a solution only 25% worse than the optimum and even solutions as

good as 1.01 times the optimum (instance I080 − 015 of SteinLib). Moreover, it

performs well for complete graphs, too (1.3 approximation ratio). Mehlhorn's

algorithm and the primal-dual algorithm achieve similar results (130% − 140% of

the optimum).

https://doi.org/10.30844/wi_2020_c4-bichler

The performance of the DAA heavily depends on the scoring function. Using only the

weight of an edge 𝑐𝑒 as a score, allocative efficiency is never better than 1.48 times of

the optimum, usually worse than 1.6 times of the optimum and even 2.97 in one

instance (I080 − 022). It seems clear, that without taking into account the structure of

the graph, the greedy algorithm employed in 𝐷𝐴𝐴𝑤 can not compete with more

sophisticated methods. Even in later stages of the DAA, edges are only selected based

on their individual cost without considering the possible paths this edge is a part on. If

we use edge weight divided by number of adjacent edges as scoring function, the

DAA already performs better than the primal-dual algorithm for most sets of

instances and even achieves results that are better than the results of the algorithm by

Robins and Zelikovsky for instances with 16 or more terminals. Results are between

1.06 and 1.6 times the optimum value with 39 out of 60 results lying between 1.1

and 1.55 times the optimum. This variant performs significantly better than the 𝐷𝐴𝐴𝑤

(on a significance level of 0.1%).

Finally, the 𝐷𝐴𝐴𝑐 generally provides better results on average than the algorithm

by Robins and Zelikovsky for k = 3. On sparse instances with only 6 terminals the

algorithm by Robins and Zelikovsky still performs slightly better. For these instances,

the 𝐷𝐴𝐴𝑐 computes solutions that are up to 1.55 times the optimum value, although

most of the solutions achieve an approximation ratio of 1.3 or lower.

Allocative Efficiency depending on the number of terminals. The results show clearly

that performance of all DAA variants increases as the number of terminals grows.

This is to be expected since a greedy-out procedure actually solves MST optimally

and the SMT problem becomes more like the MST problem for an increasing number

of terminals (in the limit, when all vertices are terminal, they are identical).

Contrarily, all other algorithms perform worse the more terminals are present in the

graph. Moreover, it can be seen that efficiency of 𝐷𝐴𝐴𝑎 and 𝐷𝐴𝐴𝑐 is nearly identical

for sparse graphs. In sparse graph, the number of possible paths between two nodes is

very limited. Since an edge 𝑒 with a lot of adjacent edges naturally allows for more

paths (and hence also more shortest paths) to pass through 𝑒, the betweenness

centrality of 𝑒 is very dependent on its adjacent edges. Therefore, the DAAs with the

corresponding scoring functions perform very similarly.

Allocative Efficiency depending on density. It can be seen that the efficiency of the

𝐷𝐴𝐴𝑤 and the 𝐷𝐴𝐴𝑎 decreases as instances with an increasing number of edges are

considered. The algorithm by Robins and Zelikovsky experiences the same behavior.

However, the opposite is true for the 𝐷𝐴𝐴𝑐.

Table 2 and Table 3 show that the 𝐷𝐴𝐴𝑎 and the 𝐷𝐴𝐴𝑐 find similarly efficient

solutions for sparse graphs, where no significant difference was observed. For

complete graphs, every node has the same number of neighbors at the beginning.

Therefore, before that crucial number of edges has been removed, the 𝐷𝐴𝐴𝑎 makes

the same choices the 𝐷𝐴𝐴𝑤 makes. In this case, the efficiency of the 𝐷𝐴𝐴𝑎 is

substantially worse (up to 1.39 times the optimum). The solutions found by the 𝐷𝐴𝐴𝑐

are never worse than 1.09 times the optimum and in eight out of ten instances at most

6% worse than the optimal value for complete graphs with 16 or 20 terminals.

https://doi.org/10.30844/wi_2020_c4-bichler

Runtime. In the following, we discuss the combined runtime required for the

approximation mechanism to obtain both, allocation and payments (cf. Table 4 and

Table 5). The differences between 𝐷𝐴𝐴𝑤 and 𝐷𝐴𝐴𝑐 (𝑝 = 0.9794) as well as

between 𝐷𝐴𝐴𝑎 and 𝐷𝐴𝐴𝑤 (𝑝 = 0.002) are not significant at a level of 𝑝 < 0.0001

using a Wilcoxon rank sum test, the other pairs were significantly different. Only the

mechanism based on Mehlhorn's algorithm and the primal dual approach are

significantly different from 𝑉𝐶𝐺 (𝑝 < 0.0001). Our experiments show that 𝑃𝐷 and

𝑀𝐻 are by far the fastest. Runtimes observed are lower than 13s on average on the set

of instances with high numbers of both terminals and edges (Table 5). Performance

for lower numbers of terminals or edges is even better. Arguably, the more advanced

payment computation used within 𝑀𝐻 leads to faster completion than calculating

prices for 𝑃𝐷, although we observed higher allocation runtime of the primal dual

algorithm when prices were not considered. Interestingly, Mehlhorn's algorithm with

payment is faster than the primal-dual algorithm despite larger allocation time. This is

evidently due to the more enhanced payment computation.

The runtime required by all DAA variants is very dependent on the density of the

graph while it scales very well with the number of terminals. In our test instances, the

computation time even decreases with an increasing number of terminals; in contrast

to all other mechanisms. 𝑉𝐶𝐺 in particular, is very sensitive to higher number of

terminals. Calculating exact solutions for SMT problems in the case of 20 terminals

proved to be computationally inefficient, requiring a factor of 40 up to 28.000 of the

runtime as compared to the best performing DAA variants. Differences between the

scoring functions are very small. Interestingly, the 𝐷𝐷𝐴𝑤 is slower than the 𝐷𝐴𝐴𝑐 on

complete graphs. This might be due to the fact that edges scoring 0 early in the

computation do not need to be assessed in later iterations and the 𝐷𝐴𝐴𝑐 possibly

finding more of these edges earlier than the 𝐷𝐴𝐴𝑤.

Table 4. Runtime combined means

E,K 350,6 3160,6 632,6 350,8 3160,8 632,8

𝑀𝐻 0.24 0.46 0.17 0.19 0.61 0.29

𝑃𝐷 0.28 3.14 0.56 0.59 4.66 0.92

𝐷𝐴𝐴𝑤 1.37 1553.71 10.29 1.29 1678.19 10.15

𝐷𝐴𝐴𝑎 1.39 1167.31 10.65 1.26 1392.11 10.35

𝐷𝐴𝐴𝑐 2.34 1476.72 12.89 2.19 1596.73 12.57

𝑉𝐶𝐺 2.05 1.80 1.71 2.82 2.34 2.54

https://doi.org/10.30844/wi_2020_c4-bichler

Table 5. Runtime combined means (continued)

E,K 350,16 3160,16 632,16 350,20 3160,20 632,20

𝑀𝐻 0.52 1.01 0.33 0.33 1.26 0.49

𝑃𝐷 1.01 9.91 1.44 1.93 12.97 1.90

𝐷𝐴𝐴𝑤 1.35 1668.95 10.38 1.39 1478.79 9.84

𝐷𝐴𝐴𝑎 1.33 1368.65 10.28 1.39 1230.18 9.89

𝐷𝐴𝐴𝑐 2.22 1547.89 12.91 2.32 1377.29 12.23

𝑉𝐶𝐺 638.87 532.76 646.89 67544.54 58556.20 67595.38

6 Conclusions

The design of electronic markets has a number of challenges due to the fact that

multiple self-interested parties participate. Incentive-compatibility is an important

property in order to select the efficient allocation in the presence of strategic bidders.

Unfortunately, the well-known VCG mechanism requires exact solutions of the

allocation problem, which is often intractable. The SMT is a case in point. It is NP-

hard and one cannot expect to solve this problem exactly for realistic problem sizes.

There is an established literature of approximation algorithms for SMT problem.

However, not all approximation algorithms can be extended to strategyproof

approximation mechanisms. The best known algorithm by Robins and Zelikovsky

violates monotonicity, a necessary condition for strategyproofness. However, the

algorithms by Mehlhorn [19] and the primal-dual algorithm by Goemans and

Williamson [20] are monotonic. Adding a critical payment rule to these algorithms

leads to polynomial-time and strategyproof 2-approximation mechanisms.

We designed a deferred-acceptance auction for the SMT problem and analyzed

several scoring functions. Overall, the results show that DAAs (foremost 𝐷𝐴𝐴𝑐) yield

very good results (efficiency and cost) at low computation times. The DAA combines

high average efficiency (as compared to MH, PD, and even RZ) with a low runtime

compared to VCG. Moreover, the DAA is the only mechanism that offers weak

group-strategyproofness. This property makes the DAA an appealing choice for

network procurement applications, where collusion is an issue. While the worst-case

approximation ratio can be quite low, the average-case solution quality is remarkably

high, as shown in our numerical experiments based on the SteinLib.

While the VCG mechanism is the approach an auctioneer should follow to

minimize payments it experiences a steep increase in runtime as the number of

terminals grows. For these instances, the MH mechanism exhibits low payments and

runtime, but it is less efficient compared to others.

Finally, it is important to note that the performance of the DAA is dependent on the

scoring function. On average, the efficiency of algorithms with a scoring function

based on betweenness centrality is very good and competitive with the best

approximation algorithms for the SMT problem.

https://doi.org/10.30844/wi_2020_c4-bichler

7 Acknowledgements

The work of Richard Littmann was funded by Deutsche Forschungsgemeinschaft

(DFG), GRK 2201.

References

1. Adomavicius, G., Gupta, A.: Toward comprehensive real-time bidder support in iterative

combinatorial auctions. Information Systems Research 16, 169-185 (2005)

2. Adomavicius, G., Gupta, A., Sanyal, P.: Effect of information feedback on the outcomes

and dynamics of multisourcing multiattribute procurement auctions. Journal of

Management Information Systems 28, 199-230 (2012)

3. Bichler, M., Gupta, A., Ketter, W.: Research commentary—designing smart markets.

Information Systems Research 21, 688-699 (2010)

4. Goetzendorff, A., Bichler, M., Shabalin, P., Day, R.W.: Compact bid languages and core

pricing in large multi-item auctions. Management Science 61, 1684-1703 (2015)

5. Bichler, M., Shabalin, P., Pikovsky, A.: A computational analysis of linear price iterative

combinatorial auction formats. Information Systems Research 20, 33-59 (2009)

6. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic behavior 35,

166-196 (2001)

7. Vazirani, V.V.: Approximation algorithms. Springer Science & Business Media (2013)

8. Karp, R.M.: Reducibility among combinatorial problems. Complexity of computer

computations, pp. 85-103. Springer (1972)

9. Öncan, T., Cordeau, J.-F., Laporte, G.: A tabu search heuristic for the generalized minimum

spanning tree problem. European Journal of Operational Research 191, 306-319 (2008)

10. Xu, J., Chiu, S.Y., Glover, F.: Tabu search heuristics for designing a Steiner tree based

digital line network. University of Colorado (1995)

11. Contreras, I., Fernández, E.: General network design: A unified view of combined location

and network design problems. European Journal of Operational Research 219, 680-697

(2012)

12. Milgrom, P., Segal, I.: Clock Auctions and Radio Spectrum Reallocation. (2018)

13. Leyton-Brown, K., Milgrom, P., Segal, I.: Economics and computer science of a radio

spectrum reallocation. Proceedings of the National Academy of Sciences 114, 7202-7209

(2017)

14. Li, S.: Obviously strategy-proof mechanisms. American Economic Review 107, 3257-3287

(2017)

15. Dütting, P., Gkatzelis, V., Roughgarden, T.: The performance of deferred-acceptance

auctions. Mathematics of Operations Research 42, 897-914 (2017)

16. Newman, N., Leyton-Brown, K., Milgrom, P., Segal, I.: Assessing economic outcomes in

simulated reverse clock auctions for radio spectrum. arXiv preprint arXiv:1706.04324

(2017)

17. Takahashi, H.M., A: An approximate solution for the Steiner problem in graphs. Math.

Japonica. 6, 573-577 (1990)

https://doi.org/10.30844/wi_2020_c4-bichler

18. Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta informatica

15, 141-145 (1981)

19. Mehlhorn, K.: A faster approximation algorithm for the Steiner problem in graphs.

Information Processing Letters 27, 125-128 (1988)

20. Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation algorithms

and its application to network design problems. Approximation algorithms for NP-hard

problems 144-191 (1997)

21. Robins, G., Zelikovsky, A.: Tighter bounds for graph Steiner tree approximation. SIAM

Journal on Discrete Mathematics 19, 122-134 (2005)

22. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved LP-based approximation for

Steiner tree. In: Proceedings of the forty-second ACM symposium on Theory of computing,

pp. 583-592. ACM, (Year)

23. Myerson, R.B.: Optimal auction design. Mathematics of operations research 6, 58-73

(1981)

24. Gualà, L., Proietti, G.: A truthful (2–2/k)-approximation mechanism for the Steiner tree

problem with k terminals. In: International Computing and Combinatorics Conference, pp.

390-400. Springer, (Year)

25. Buchsbaum, A.L., Kaplan, H., Rogers, A., Westbrook, J.R.: Linear-time pointer-machine

algorithms for least common ancestors, mst verification, and dominators. arXiv preprint

cs/0207061 (2008)

26. Pettie, S., Ramachandran, V.: Computing shortest paths with comparisons and additions. In:

Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pp.

267-276. Society for Industrial and Applied Mathematics, (Year)

27. Tarjan, R.E.: Sensitivity analysis of minimum spanning trees and shortest path trees.

Information Processing Letters 14, 30-33 (1982)

28. Brandes, U.: A faster algorithm for betweenness centrality. Journal of mathematical

sociology 25, 163-177 (2001)

29. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. The Journal of

finance 16, 8-37 (1961)

30. Clarke, E.H.: Multipart pricing of public goods. Public choice 11, 17-33 (1971)

31. Groves, T.: Incentives in teams. Econometrica 41, 617-631 (1973)

32. Erickson, R.E., Monma, C.L., Veinott Jr, A.F.: Send-and-split method for minimum-

concave-cost network flows. Mathematics of Operations Research 12, 634-664 (1987)

33. Iwata, Y.S., Takuto: Send-and-split method for minimum-concave-cost network flows.

(2018)

34. Koch, T.M., Alexander, Voß, S.: SteinLib: An Updated Library on Steiner Tree Problems

in Graphs. (2000)

https://doi.org/10.30844/wi_2020_c4-bichler

8 Appendix: Approximation Algorithms for the minimum

Steiner tree

In 8.1 we discuss loss-contraction algorithms on the basis of the algorithm by Robins

and Zelikovsky [21], in Section 8.2 we consider distance-network based approaches,

in Section 8.3 the primal-dual approximation, and in Section 8.4. the DAA.

8.1 Loss-Contracting Approximation: The Algorithm by Robins and

Zelikovsky

Any Steiner tree 𝑆(𝐺, 𝐾) of 𝐺 is either a full Steiner tree, i.e., all its terminals are

leaves, or can be decomposed into a forest of full Steiner subtrees (full components).

A 𝑘-restricted full component 𝐹 is a full component with 𝑘 ≥ 3 terminals. By 𝐶𝑙[𝐹]
we denote the loss-contracted full component of 𝐹. We define the gain and loss of a

full component 𝐹 formally and then describe the execution of Algorithm 1 below.

Definition 5 (Gain and Loss of a Full Component (Robins and Zelikovsky, 2005))

Let 𝑇 be a tree spanning 𝐾 and 𝐹 be an arbitrary full component of 𝐺 given 𝐾. Let

𝑇[𝐹] be a minimum cost graph in 𝐹 ∪ 𝑇 which contains 𝐹 completely and spans all

terminals in 𝐾. This means 𝑇[𝐹] is the result of replacing a part of the tree 𝑇 with the

full component 𝐹.

Then the Gain of 𝐹 w.r.t. 𝑇 is the cost difference between 𝑇 and 𝑇[𝐹]:
𝑔𝑎𝑖𝑛𝑇(𝐹) = 𝑐𝑜𝑠𝑡(𝑇) − 𝑐𝑜𝑠𝑡(𝑇[𝐹]) (4)

The Loss of 𝐹 is a minimum-cost subforest of 𝐹 containing a path from each Steiner

point in 𝐹 to one of its terminals: 𝐿𝑜𝑠𝑠(𝐹) = 𝑀𝑆𝑇(𝐹 ∪ 𝐸0(𝐹)) \ 𝐸0(𝐹), where 𝐸0(𝐹)

denotes a complete graph containing all terminals of 𝐹, with all edge costs being 0. It

follows that

𝑙𝑜𝑠𝑠(𝐹) = 𝑐𝑜𝑠𝑡(𝑀𝑆𝑇(𝐹 ∪ 𝐸0(𝐹)) \ 𝐸0(𝐹)) (5)

Data: 2-connected graph 𝐺 = (𝑉, 𝐸, 𝑏), terminal set 𝐾 ⊆ 𝑉, an integer 𝑘 with

 3 ≤ 𝑘 ≤ |𝐾|
Result: A 𝑘-restricted Steiner tree 𝑆(𝐺) in 𝐺 spanning 𝐾

01 Compute 𝐺𝑉 and 𝐺𝐾

02 𝑇 = 𝑀𝑆𝑇(𝐺𝐾)

03 repeat

04 Find a 𝑘-restricted full component 𝐹 maximizing 𝑟 = 𝑔𝑎𝑖𝑛𝑇(𝐹)/𝑙𝑜𝑠𝑠(𝐹)

05 𝐺𝐾 = 𝐺𝐾 ∪ 𝐹

06 𝑇 = 𝑀𝑆𝑇(𝑇 ∪ 𝐶𝑙[𝐹])

07 until 𝑟 ≤ 0

08 𝑆(𝐺, 𝐾) = 𝑀𝑆𝑇(𝐺𝐾)

09 Replace artificial edges in 𝑆(𝐺, 𝐾)

10 Cut Steiner point leaves of 𝑆(𝐺, 𝐾)

11 return 𝑆(𝐺, 𝐾)

Algorithm 1: Approximation Allocation Algorithm 𝐴𝑅𝑍

https://doi.org/10.30844/wi_2020_c4-bichler

The algorithm starts by computing the complete graph 𝐺𝑉 based on shortest paths, its

subgraph 𝐺𝐾 induced by the terminal set 𝐾 (Line 1) and the MST on 𝐺𝐾 (Line 2).

Afterwards, the gain-over-loss ratios for all 𝑘-restricted full components are

computed. After choosing the full component with the highest gain-over-loss ratio,

the selected component is added to 𝐺𝐾 (Line 5). The component is also added to 𝑇 in

loss-contracted form 𝐶𝑙[𝐹] (Line 6). To contract the loss of a full component 𝐹, we

merge every connected tree of the forest 𝐿𝑜𝑠𝑠(𝐹) into a single vertex, the respective

terminal of the component. Two terminals are connected in 𝐶𝑙[𝐹] if their respective

components in 𝐿𝑜𝑠𝑠(𝐹) have an adjacent edge in 𝐹 and the cost of the edge in 𝐶𝑙[𝐹]
is equal to the cost of the respective edge in 𝐹.

After 𝐶𝑙[𝐹] was added to 𝑇, an MST is built on 𝑇 ∪ 𝐶𝑙[𝐹]. By improving 𝑇 the

gain-over-loss ratio for the remaining full components is decreasing. Eventually, all

components will have a gain-over-loss ratio of at most zero. At this point, the

algorithm computes the MST(𝐺𝐾) (Line 8), transforms all its artificial edges back into

original edges, i.e. replaces artificial edges by the respective shortest path, and cuts

leaves which are Steiner points (Lines 9, 10).

8.2 Distance-Network-based Approximation: The Algorithm by Mehlhorn

Mehlhorn's algorithm [19] partitions 𝐺 into Voronoi regions, which are then utilized

to construct a subgraph of 𝐺𝐾, called �̅�, in the first phase. In the second phase, edges

(shortest paths) in the MST are decomposed into edges in E, and a MST is computed

on the resulting graph to remove possible cycles. Finally, in the third phase, non-

terminal leaves are deleted. We give definitions for Voronoi regions and �̅�, and

provide a short pseudo code representation of the algorithm (Algorithm 2).

Definition 6 (Voronoi Regions 𝑉(𝑠)) Given a general graph 𝐺 = (𝑉, 𝐸, 𝑏) and the

set of terminals 𝐾 ⊆ 𝑉 , the Voronoi region 𝑉(𝑠) of a terminal 𝑠 ∈ 𝐾 contains all

vertices 𝑣 ∈ 𝑉 for which the shortest path 𝑠𝑝(𝑠, 𝑣) ≤ 𝑠𝑝(𝑡, 𝑣) for all 𝑡 ∈ 𝐾. We break

ties randomly, such that each vertex 𝑣 uniquely belongs to one such region.

Definition 7 (Distance Network based on 𝑉) Let �̅� = (𝐾, 𝐸�̅� , 𝑏�̅�) be the distance

network with edges and weights as follows:

(𝑠, 𝑡) ∈ 𝐸�̅� ⇔ ∃ (𝑢, 𝑣) ∈ 𝐸 such that 𝑢 ∈ 𝑉(𝑠) and 𝑣 ∈ 𝑉(𝑡) (6)

𝑏�̅�(𝑠, 𝑡) = 𝑚𝑖𝑛{𝑠𝑝(𝑠, 𝑢) + 𝑏(𝑢, 𝑣) + 𝑠𝑝(𝑣, 𝑡): 𝑢 ∈ 𝑉(𝑠), 𝑣 ∈ 𝑉(𝑡), (𝑢, 𝑣) ∈ 𝐸} (7)

Data: 2-connected graph 𝐺 = (𝑉, 𝐸, 𝑏), terminal set 𝐾 ⊆ 𝑉

Result: A Steiner tree 𝑆(𝐺, 𝐾) in 𝐺 spanning 𝐾

01 Compute Voronoi regions of 𝐺 and generate �̅�

02 𝑆(𝐺, 𝐾) = 𝑀𝑆𝑇(�̅�)

03 Replace artificial edges in 𝑆(𝐺, 𝐾)

04 Cut non-terminal leaves of 𝑆(𝐺, 𝐾)

05 return 𝑆(𝐺, 𝐾)

Algorithm 2: Approximation Allocation Algorithm 𝐴𝑀𝐻

https://doi.org/10.30844/wi_2020_c4-bichler

8.3 Primal-Dual Approximation Algorithms

This section describes the general approach for primal-dual approximations and the

approximation algorithm for the minimum Steiner tree problem by Goemans and

Williamson [20]. Many problems in graph theory can be reduced to the hitting set

problem. For a groundset 𝐸 with cost 𝑐𝑒 ≥ 0 for every element 𝑒 ∈ 𝐸 and subsets

𝑇1, 𝑇2 . . . 𝑇𝑛 ⊆ 𝐸, the hitting set problem is to find a subset 𝐴 ⊆ 𝐸 of minimal cost

such that 𝐴 ∩ 𝑇𝑖 ≠ ∅ for all subsets 𝑖 = {1, . . . 𝑛}. The primal integer program for the

hitting set problem can be formulated as follows:

Min ∑ 𝑐𝑒𝑥𝑒𝑒∈𝑒

subject to ∑ 𝑥𝑒 ≥ 1, ∀𝑖𝑒∈𝑇𝑖

 𝑥𝑒 ∈ {0,1}

To obtain the relaxation, simply the constraint 𝑥𝑒 ∈ {0, 1} needs to be relaxed to 𝑥𝑒 ≥
0. The corresponding dual program is stated below:

Max ∑ 𝑦𝑖𝑖

subject to ∑ 𝑦𝑖 ≤ 𝑐𝑒 , ∀𝑒 ∈ 𝐸𝑖:𝑒∈𝑇𝑖

 𝑦𝑖 ≥ 0 ∀𝑖

To obtain an 𝛼-approximation we compute a solution �̅� to the primal integer program

and a solution 𝑦 to the dual of the relaxed primal program such that ∑ 𝑐𝑒�̅�𝑒 ≤𝑒∈𝐸

𝛼 ∑ 𝑦𝑖
𝑛
𝑖=1 .

Mapping the hitting set problem to the minimum Steiner tree problem is

straightforward: the ground-set is given by the edges 𝐸 of the graph and 𝑐𝑒 is the cost

of the respective edge 𝑒 ∈ 𝐸. Let 𝑆𝑖 be a subset of vertices that contains at least one,

but not all terminals, i.e. a cut. When all cuts are crossed, the solution is a feasible

allocation for the minimum Steiner tree problem. By definition, the edges adjacent to

exactly one vertex 𝑣 ∈ 𝑆𝑖 are the edges crossing the cut 𝑆𝑖. Let 𝛿(𝑆𝑖) denote the set of

these edges. Let 𝑇𝑖 = 𝛿(𝑆𝑖).

Algorithm 3 describes the necessary steps to compute 𝐴. During the initialization,

𝐴 is empty and all dual variables 𝑦 are set to 0 (Lines 1, 2). In each iteration, we

compute 𝑈 to contain all 𝑇𝑘 that are unsatisfied and minimal, i.e. there is no

unsatisfied set 𝑇𝑗 with 𝑇𝑗 ⊂ 𝑇𝑘 (Line 5). Afterwards, the dual variables 𝑦𝑘

corresponding to set in 𝑈 are increased (loaded) until one of the constraints holds with

equality (it goes ”tight”, Line 6). The corresponding element 𝑒 is then added to the

solution. If the allocation 𝐴 is feasible, the algorithm stops and conducts a reverse

deletion (Lines 9 – 14). In this phase, edges are assessed in regard to their necessity in

reversed order (LIFO). Unnecessary edges either connect a Steiner point as a leaf or

close a cycle. In either case, the edge is not contributing to the solution (apart from

inflicting costs). Finally, the solution is returned.

https://doi.org/10.30844/wi_2020_c4-bichler

Data: 2-connected graph 𝐺 = (𝑉, 𝐸, 𝑏), terminal set 𝐾 ⊆ 𝑉

Result: A Steiner tree 𝑆(𝐺) in 𝐺 spanning 𝐾

01 𝑦 = 0 ∀𝑦

02 𝐴0 = ∅

03 𝑖 = 0

04 while 𝐴𝑖 not feasible do

05 Choose violated sets 𝑈
06 Increase 𝑦𝑘 uniformly for all 𝑇𝑘 ∈ 𝑈 until ∃𝑒𝑖 ∉ 𝐴𝑖 s.t. ∑ 𝑦𝑖𝑖:𝑒𝑖∈𝑇𝑖

= 𝑐𝑒𝑖

07 𝐴𝑖 = 𝐴𝑖 ∪ {𝑒𝑖}
08 𝑖 = 𝑖 + 1

09 end

10 𝐴′ = 𝐴𝑖−1

11 for 𝑖; 𝑖 ≥ 0; 𝑖 = 𝑖 − 1 do
12 if 𝐴’ ∖ {𝑒𝑡𝑖

} still feasible then

13 𝐴’ = 𝐴’ ∖ {𝑒𝑡𝑖
}

14 end

15 end

16 return 𝐴′

Algorithm 3: Approximation Allocation Algorithm 𝐴𝑃𝐷

8.4 Deferred Acceptance Auctions for Steiner Trees

The DAA greedily excludes the least desirable option from the solution until further

removal would lead to an infeasible solution. Algorithm 4 shows an implementation

of the DAA for the Steiner tree problem. To decide which option should be excluded

in each iteration a scoring function is used. In each iteration, the scoring function

assigns a value of at least 0 to an edge 𝑒 (Line 2) based only on the cost of 𝑒 itself and

what other options are still available (ignoring the other options’ costs, however).

Edges that cannot be removed without making the resulting solution infeasible receive

a score of 0. When a score of 0 is assigned to an edge the first time we compute the

payment 𝑝(𝑒) (Lines 3, 4) This payment is equal to the cost 𝑒 could have stated such

that her score would have been equal to an edge that was removed in the last iteration

before her score was set to 0. If there are edges with a positive score left the highest

scoring edge is removed from the solution (Line 9), otherwise the algorithm

terminates.

https://doi.org/10.30844/wi_2020_c4-bichler

Data: 2-connected graph 𝐺 = (𝑉, 𝐸, 𝑏), terminal set 𝐾 ⊆ 𝑉, scoring function 𝑠

Result: A Steiner tree in 𝐺 spanning 𝐾

01 for each edge 𝑒 do

02 assign score 𝑠(𝑒) to 𝑒

03 if 𝑠(𝑒) = 0 then

04 compute payment 𝑝(𝑒)

05 end

06 if highest score equals 0 then

07 return remaining edges (Steiner tree)

08 end

09 remove 𝑒 with the highest score

10 end

11 return remaining edges

Algorithm 4: Deferred-Acceptance Auction

https://doi.org/10.30844/wi_2020_c4-bichler

