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1. Introduction 

In the last decade, a growing number of studies have focused on decoding activa-
tion patterns from neurophysiological measures to identify current cognitive or 
affective-emotional states (e.g., Appriou et al., 2020; Fairclough, 2009; Parasura-
man & Rizzo, 2008; Picard, 2000). The detection and monitoring of learners' men-
tal states by means of a brain-computer interface (BCI) enables a continuous as-
sessment of currently available cognitive resources, attention, and motivation. A 
BCI is a technical interface between the brain and a computer. In most cases, sen-
sors on the surface of the head or skin are used to measure signals from the pe-
ripheral and central nervous system (e.g., the electroencephalography, EEG for 
recording brain activity). Machine learning techniques allow to process these sig-
nals and classify current mental states of learners. In a next step, the recognized 
states can be transmitted to a computer, for example, an intelligent tutoring system 
(e.g., Wolpaw et al., 2002; Vukelić et al., 2021).  

In this paper, we provide an overview of research on neuro-adaptive systems and 
the recognition of affective-emotional and cognitive states. Current research find-
ings are presented and explained within the illustrative application of a neuro-adap-
tive tutoring system. Chapters 2 and 3 present two validation studies on the con-
tinuous neuro-physiological based recognition of affective-emotional and cogni-
tive states. The results of the studies and their implications are discussed in Chap-
ters 4 and 5. Finally, an outlook on future research questions and methodologies 
is provided.  

1.1. Neuro-adaptive systems and Brain-Computer Interfaces for recognizing 
the learners’ states  

A neuro-adaptive system is a system in which (1) neurophysiological signals are 
recorded in a closed human-technology loop, (2) mental user states are interpreted 
from these signals, and (3) system behaviour is adapted, accordingly. A neuro-
adaptive closed-loop system has the great potential to adapt learning content, 
learning speed, and learning formats to the needs and abilities of the learners via 

236 



236          Katharina Lingelbach, Sabrina Gado, Wilhelm Bauer 

 

an intelligent tutoring system. A major achievement in the field of neuro-adaptive 
systems has been the development of "passive" BCIs (e.g., Zander & Kothe, 2011). 
The main difference between passive BCIs and the more familiar "active" BCIs is 
that passive BCIs record implicit and spontaneous brain activity. In active BCIs, 
users voluntarily and mentally transmit specific commands to a computer applica-
tion – they, thus, "actively" take control (for example, in physically severely im-
paired stroke or locked-in patients, e.g., Bensch et al., 2007; Brauchle et al., 2015; 
Carlson & Millan, 2013; Leeb et al., 2015). In contrast, passive BCIs do not require 
voluntary actuation. Hence, the person is not disturbed in his or her current task. 
For state detection, different measurement methods can be combined to create a 
hybrid BCI (e.g., an EEG with an electrocardiography (ECG) to collect cardiac 
activity, additionally). The use of multiple measurement methods has the ad-
vantage of a more robust and convergent estimation of the current mental states.  

In addition to the system adaption towards the learner’s needs and abilities, provid-
ing feedback to him or her on the current affective-emotional and cognitive states 
can promote self-regulation (Yu et al., 2018) and improve cognitive performance 
via neurofeedback (Dessy et al., 2018; Kosuru et al., 2019). Perceived successes 
during learning, lead to pleasant affective-emotional states, such as pleasure, pro-
mote perceived self-efficacy, and positively impact intrinsic motivation and, thus, 
performance in everyday and professional contexts (Shockley et al., 2012; Niklas 
& Dormann, 2005).  

1.2. Cognitive load and affective-emotional states during learning 

For the work context, concepts of lifelong learning (LLL) and employee training 
and reskilling are crucial for performance and maintaining competitiveness (World 
Economic Forum, 2019). Therefore, an optimal fit between learners and cognitive 
demands of the learning unit is desirable. Mental or cognitive (work)-load is de-
fined as the ratio of available mental resources relative to the resources required to 
complete a task (Hart & Staveland, 1988). The more the available resources are 
required by the demands of a task, the higher the (perceived) cognitive load. Too 
high cognitive load, e.g., due to training units that are too difficult or demanding, 
is associated with occupational exhaustion, stress, fatigue, and, consequently, re-
duced performance (Bowling et al., 2015; Gevins & Smith, 2003; see also DIN EN 
ISO 26800 2011). Contrarily, too little stimulation and cognitive demand can lead 
to underload, loss of focus, and even reduced abilities (see Young & Stanton 2002; 
Young et al., 2015). In the case of an optimal fit between the task difficulty and 
the learner's abilities, a state described in positive psychology as flow can occur. 
This flow state is characterized by the fact that the performance of the task is 
perceived as rewarding and the person is absorbed in the activity (e.g., Nakamura 
& Csikszentmihalyi, 2009).
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1.3. Physiological correlates of cognitive load and affective-emotional states 

In order to use the neuro- and peripheral-physiological signals for decoding mental 
states, it is relevant to identify informative patterns and dynamics. Regarding the 
visceral or autonomic nervous system, increased mental workload is associated 
with a decrease in parasympathetic nervous system activity and an increase in sym-
pathetic nervous system activity (Babiloni, 2019). The two systems act antagonis-
tically, with the parasympathetic nervous system being associated with regenera-
tion and digestion ("Rest and Digest") and the sympathetic nervous system being 
associated with activation and readiness for action ("Fight or Flight"). These 
changes in the autonomic nervous system activity can be detected by various pe-
ripheral physiological signals; for example, skin conductance (electrodermal activ-
ity (EDA, e.g., Roth, 1983), heart rate and heart rate variability (Berntson et al., 
1997), and pupil dilation (Pomplun & Sunkara, 2003). 

Pleasure and positive learning experiences are natural reinforcers during the learn-
ing processes that promote willingness to learn and, potentially as a consequence, 
learning success. Furthermore, affective-emotional states are particularly relevant, 
as they influence performance by means of mediators such as motivation and en-
gagement. Due to the development of sophisticated neurophysiological recording 
and signal analysis methods, continuous real-time recording and decoding of emo-
tional reactions has experienced significant progress in recent years. To decode 
emotions based on neuro- and peripheral physiological activity, affective-emo-
tional states need to be operationalized first. Several approaches have been pro-
posed in the literature. One frequently used model is the dimensional Circumplex 
model introduced by Russell (1980). It describes emotions with the help of the two 
dimensions valence (degree of evaluation: positive over neutral to negative) and 
arousal (degree of activation: calm to excited). While valence can be investigated via 
neurophysiological measurement methods, such as the EEG (Shu et al., 2018; 
Verma & Tiwary, 2014), peripheral-physiological measurement methods, such as 
the EDA and ECG, provide suitable correlates of arousal. In the past, the frontal 
alpha asymmetry (FAA) index has been proposed as a suitable index for decoding 
affective-emotional states (Smith et al., 2017). The FAA index is calculated by sub-
tracting the EEG alpha power (i.e., oscillatory signals in the frequency range be-
tween 8 and 12 Hz) of the left hemisphere from the right hemisphere (Ahern & 
Schwartz, 1985). The ratio of frontal theta to parietal alpha power is used as a 
workload index (WL index) to detect cognitive load (e.g., Brouwer et al., 2012; 
Gevins & Smith, 2003).  

Compared to self-reports (e.g., via questionnaires), peripheral and neurophysiolog-
ical signals are stated to be more objective and unbiased when detecting cognitive 
and affective-emotional states. Bias in self-reports and other more subjective 
measures might among others occur due to social desirability or limitation of lan-
guage (e.g., Nisbett & Wilson, 1977; Scherer & Ceschi, 2000).  
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However, especially in naturalistic settings, outside the controlled laboratory con-
text, cognitive and affective-emotional states rarely occur separately. They are ra-
ther intertwined and interdependent (e.g., Cromheeke & Mueller, 2014; Ihme et 
al., 2018; Seleznov et al., 2019). In everyday life, we are confronted with complex, 
(socio-) emotional stimuli, demanding our cognitive resources like attention (e.g., 
a crying baby in a home office or laughter in an open-plan office). Previous re-
search has shown impairing effects of task-irrelevant emotional distraction on cog-
nitive load and working memory performance (Cromheeke & Mueller, 2014; 
Dolcos & Denkova, 2014; Iordan et al., 2013). There seems to be a relationship 
between the degree of cognitive load and affective-emotional processing. When 
studying interacting cognitive and affective-emotional states, identifying the neural 
dynamics and networks involved in order to adequately describe the interaction is 
a major challenge that requires further research (Morawetz et al., 2020; Okon-
Singer et al., 2015; Seleznov et al., 2019; Zinchenko et al., 2020). Machine learning 
(ML) approaches may potentially provide a tool to identify informative correlates 
that decode complex cognitive and affective-emotional states and their interaction 
(e.g., King & Dehaene, 2014). 

1.4. Neurofeedback in adaptive tutoring systems 

When using neuro-adaptive systems in naturalistic applications, there are some 
factors that significantly influence effectiveness and acceptance: (1) feedback re-
garding the recognized states, (2) its perceived appropriateness, and (3) the relia-
bility of the system. Thus, how learners perceive and evaluate feedback from 
neuro-adaptive tutoring systems is strongly influenced by trust: previous research 
has shown that trust in an agent or system is strongly affected by its reliability in 
task performance and negatively correlated with perceived errors of the automated 
system (Chen et al., 2018; Master et al., 2005). Consequently, acceptance and trust 
in a system are related to the perceived accuracy of the feedback and the subjective 
tolerance for error of the users. Alder and Ambrose's (2005) research examined 
the effect of perceived accuracy, fairness of feedback, and control over feedback 
(e.g., frequency of feedback) on satisfaction and engagement as well as behavioural 
measures. The authors reported that the perceived appropriateness and accuracy 
of feedback are critical, as these factors influence the impact of feedback on per-
formance, attitudes toward the system, and its perceived usefulness. Using EEG, 
the responses evoked by the feedback can be explored in terms of Event-Related 
Potentials (ERPs) and used to automatically improve the feedback of the neuro-
adaptive tutoring system (Ferrez & Millan, 2008; Mattout et al., 2015). ERP re-
sponses differ depending on whether feedback is perceived as appropriate or not. 
Two ERP responses are indicators of mental adjustment between internal and ex-
ternal representations and, thus, erroneously perceived feedback (Pfabigan et al., 
2011): First, a negative deflection approximately 250 ms after the onset of the 
feedback (i.e., the Feedback-Related Negativity, FRN, which is comparable to the 
Error-Related Negativity) and second, a positive deflection after approximately 
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300 ms (e.g., P300). The indicators represent the internal process that the person 
perceives a discrepancy between expected and experienced feedback. To reduce 
the discrepancy in future interactions, expectations are adjusted based on experi-
ence.  

In this paper, we present a neurophysiological-based approach to continuously 
capture learners' cognitive and affective-emotional states by measuring and decod-
ing brain activity using a passive EEG-based BCI. The described research vision 
of a closed-loop neuro-adaptive tutoring system allows the system to learn from 
and adapt to detected mental states estimated from neurophysiological activation 
patterns. 

We focus on the following research questions: (1) How well can we decode the 
interaction of mental states using theoretically supported correlates? (2) Can we 
predict subjective appraisal using neurophysiological correlates?  

In a second study, we investigate (3) what effect the feedback of recognized cog-
nitive and affective-emotional states has on performance (i.e., reaction time and 
accuracy). In this study, we focus on two aspects: (a) the effectiveness and assess-
ment of unreliable feedback examined using either legitimate (consistent with the 
experimental condition) or inadequate (inconsistent with the experimental condi-
tion) feedback (Enriquez-Geppert et al., 2017; Logemann et al., 2010) and (b) the 
detection of neural correlates associated with erroneous feedback.  

2. Methods 

In the following, two validation studies and their results on EEG-based continu-
ous recognition of cognitive and affective-emotional states are presented. 

2.1. Sample 

Eight participants participated in the first study (three women; M = 23 years; SD 
= 1.12; we used data from five participants for the decoding due to strong artifact 
in the remaining three participants) and another seven participants participated in 
the follow-up study (four women; M = 25.48 years; SD = 2.66). The purpose of 
the first study was to develop a method for continuous estimation and visualization 
of mental states. In the second study, we examined the effect of continuous feed-
back of recognized states on performance. Participants had corrected or normal 
vision and reported no psychiatric or neurological disorders. The study was ap-
proved by the Ethics Committee of the Medical Faculty of the University of Tü-
bingen (ID: 827/2020BO1) and preregistered on OSF (osf.io/gnst5). Prior to the 
study, participants signed an informed consent form according to the recommen-
dations of the Declaration of Helsinki. 
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2.2. Experimental design and procedere 

At the beginning of each session, a three-minute resting state measurement of the 
EEG signals was performed. During the resting state recording participants had 
their eyes open and fixated on a crosshair positioned in the centre of the screen. 
Afterwards, participants performed arithmetic tasks requiring the addition of ei-
ther low, 1-digit numbers (low working memory load, LWML) or larger, 2-digit 
numbers (high working memory load, HWML). The participants had to add up 
three consecutive numbers while updating and retaining the intermediate result in 
their memory. At the same time, affective-emotional states were induced by audi-
tory sounds with negative (Low Valence, LV), neutral (Neutral Valence, NV), or 
positive (High Valence, HV) content from the International Affective Digitized 
Sounds (I-ADS) database (Bradley & Lang, 2007). This results in a 2 × 3 factorial 
study design with the cognitive conditions LWML and HWML and affective-emo-
tional conditions LV, NV, and HV.  

In the first study, participants rated the sounds after each presentation in terms of 
subjectively perceived valence using the Emoij-Grid (Toet & van Erp, 2019). After 
completing three consecutive arithmetic operations of the same difficulty, partici-
pants were asked to rate the perceived effort using the NASA Task Load Index 
(Hoonakker et al., 2011). Figure 01 provides a detailed overview of the experi-
mental procedure.  

In the second trial, we no longer asked participants about their subjective evalua-
tion of the stimuli, but instead, after completing three successive arithmetic oper-
ations, we showed them either legitimate (i.e., consistent with the experimental 
condition) or inadequate (i.e., inconsistent with the experimental condition) feed-
back related to the previous cognitive and affective-emotional states (see Figure 
02). Participants could correct the rating via mouse click on the scale according to 
their own perception. In 80% of the runs, the feedback score was consistent and, 
thus, legitimate with the experimental condition; in 20%, it was inconsistent and, 
thus, inadequate. For example, a high recognized cognitive load was feedbacked 
after a simple task (inadequate feedback). After the experiment, we asked the par-
ticipants in a semi-structured qualitative interview how they perceived the feed-
back. 
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Figure 01: Experimental procedure of the first study. After each auditory stimulus and after each cog-
nitive task, participants provided subjective ratings regarding the perceived valence and cognitive ef-

fort. 

 

Figure 02: Experimental procedure of the second study. After each run, two scores indicating the rec-
ognized valence and cognitive effort experienced during the previous trial were presented to the par-
ticipants. In 20% of the cases, the presented scores were not adequate. The participants could adjust 

the scores via mouse click according to their own perception. 

2.3. EEG recording and analysis 

EEG data were recorded according to the international 10-20 system using the 
Cognionics wireless EEG headset with 20 dry electrodes and a sampling rate of 
500 Hz (see Figure 03).  

The EEG was grounded to the left mastoid and the impedance was below 2,500 
kΩ at the beginning of the experiment. During offline pre-processing, signals were 
decorrelated, zero-padded, and referenced to mathematically linked mastoids 
(Nunez & Srinivasan, 2006). A notch filter and FIR (finite impulse response) band-
pass filters with cut-off frequencies of 1 and 20 Hz were applied. Then, the signal 
was cut into 4 s long epochs starting from the presentation of the stimuli. A 200 
ms baseline was extracted per epoch from the signal before stimulus onset. Epochs 
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that had a maximum deviation of 250 μV in one of the frontal EEG channels (Fp1, 
Fp2) were removed. In addition, artifacts due to cardiac and muscle activity or eye 
movements were removed using an independent component analysis (ICA) 
(Chaumon et al., 2015; Hipp & Siegel, 2013; Lee et al., 1999). The independent 
component analysis (ICA) computes linearly independent components (IC) from 
the data, which can then be classified as artifact or true EEG signal based on their 
topology or power spectrum. In the next step, the power in the alpha (8 - 12 Hz) 
and theta (4 - 7 Hz) frequency bands was calculated using the Welch method, that 
is a modified version of the Fast Fourier Transform (FFT).  

 

Figure 03: State-of-the-art EEG sensors with dry electrodes, which allow easy handling during prepa-
ration. 

To evaluate the ERPs for the consistent and inconsistent feedbacks, the EEG sig-
nals were filtered with an FIR bandpass filter and narrow frequency band from 0.5 
to 23 Hz. In addition, smaller 1-s epochs were chosen starting from the presenta-
tion of the estimated score (i.e., the feedback). Epochs were corrected to baseline 
by subtracting the mean amplitude of the baseline interval (200 ms before score 
onset). To identify differences in ERPs between feedback conditions for valence 
and cognitive effort scores, we used a cluster-based nonparametric randomization 
approach (Maris & Oostenveld, 2007). Clusters were identified as adjacent EEG 
channels and time points in the epoch, using a T-value-based cluster-level thresh-
old of p < .01 and a group-level threshold of p < .05 (two-sided).   

To quantify differences between feedback conditions (consistent and incon-
sistent), a one-factor repeated measures analysis of variance (rmANOVAs) was 
used with the dependent variables (1) perceived correctness (that is, the likelihood 
that the person will correct the feedback score), (2) reaction time and (3) accuracy 
on the subsequent trial.  

2.4. ML-based decoding of cognitive and affective-emotional states 

For the estimation of the mental states, we used those channels and frequency 
bands that are proposed in the literature for the calculation of indices associated 
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with affective-emotional and cognitive states (F3 - alpha, Fz - theta, F4 - alpha, Pz 
- alpha) as well as the Hjorth measures of mobility (proportion of standard devia-
tion of the frequency spectrum) and complexity (change within the frequency 
band) of the respective channels as predictive features. In a second step, we cor-
rected the hypothesized annotations (based on the experimental condition) using 
the subjective ratings in order to predict the subjective evaluation. In the second 
prediction of the subjective ratings, the same neurophysiological signals were used 
as features.  

The conditions were classified in pairs (HV-HWML vs. LV-HWML, HV-LWML 
vs. LV-HWML, LV-HWML vs. HV-LWML, LV-HWML vs. LV-LWML) and in 
a four-class problem (HV-HWML vs. HV-LWML vs. LV-HWML vs. LV-
LWML). 

The following supervised ML classifiers were implemented using scikit-learn 
(Pedregosa et al. 2011) and explored regarding their performance: (1) Logistic Re-
gression (LR), (2) Support Vector Machine (SVM), k-Nearest Neighbor, (4) Ran-
dom Forest Classifier (RFC), (5) Gradient Boosting Classifier (GBC), and Gauss-
ian Naive Bayes (GNB). A dummy classifier with stratification as method was 
trained as an empirical baseline indicating a random prediction which also consid-
ers class distributions in the data. Hyperparameters were optimized in a random-
ized GridSearch based on the training set and with the balanced accuracy as eval-
uation metric. Classification accuracy of the classifiers was evaluated within a strat-
ified 3-fold cross-validation individually for the participants using the balanced ac-
curacy as evaluation metric. To obtain a distribution of average classification accu-
racy, we used a Monte Carlo simulation (MCS) by training the classifiers 100 times, 
each with a new train-test split (80:20) and model initiation.  

3. Results 

3.1. Decoding of neural correlates for the prediction of the conditions and sub-
jective ratings  

To answer how well we can decode the interaction of mental states using theoret-
ically supported correlates, we compared several supervised ML methods. Our re-
sults show that we were able to discriminate experimental conditions with high 
classification accuracy (see Table 2 and Figure 5). 

 Experimental condition Subjective ratings 

Classifier 2.5th per-
centile 

Mean 97.5th per-
centile 

2.5th per-
centile 

Mean 97.5th per-
centile 

LR 0.626 0.923 1 0.15 0.344 0.542 

SVM 0.642 0.917 1 0.15 0.352 0.558 
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KNN 0.562 0.865 1 0.133 0.353 0.592 

RFC 0.597 0.866 1 0.133 0.334 0.550 

GBC 0.569 0.865 1 0.117 0.327 0.558 

GNB 0.532 0.835 1 0.133 0.339 0.567 

Dummy 0.182 0.500 0.818 0.091 0.280 0.500 

Table 1: Average classification accuracy based on the test set of classifiers compared to an empirical 
baseline. Left: Prediction of the experimental condition. Right: Prediction of the subjective ratings. 

Thereby, the accuracy measures of the selected classifiers (LR, SVM, KNN, RFC, 
GBC and GNB) are significantly above an empirically estimated chance level 
(dummy classifier). The classifiers do not differ significantly in their classification 
accuracy (see Table 1). In a next step, we wanted to predict the subjective assess-
ments, that are the subjective ratings, using the same algorithms and neurophysio-
logical correlates. Interestingly, the classification accuracy drops to a chance level 
when the annotations are corrected based on the subjective ratings. Thus, influ-
ences not represented in the neurophysiological signals seem to affect a subjective 
assessment of experienced stimuli and perceived states. 
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Figure 05: Average classification accuracy of the training set (green) and test set (light green) of par-
ticipants and iterations compared to an empirical baseline (dummy classifier; blue). 2.5th and 97.5th 

percentiles of the simulation with 100 iterations.  Top: Prediction of the experimental condition. Bot-
tom: Prediction of the subjective ratings. 
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3.2. Influences of consistent and inconsistent feedback on performance-related 
measures 

In a second study, we examined the effect of consistent and inconsistent feedback 
regarding recognized cognitive and affective-emotional states on performance (i.e., 
reaction time and accuracy). With regard to perceived accuracy, participants cor-
rected inconsistent feedback of recognized values significantly more frequently, 
F(1, 6) = 30.82, p < .001, pη² = .84 (cognitive effort score) and F(1, 6) = 5.14, p = 
.064, pη² = .46 (affective-emotional state score). Inappropriate, inconsistent feed-
back had no significant effect on performance-related measures in the subsequent 
run. Experimental condition (e.g., task difficulty) had no effect on perceived accu-
racy of feedback and likelihood of correction. Analysis of the neurophysiological 
ERP responses did not identify significant clusters describing the difference be-
tween consistent and inconsistent feedback. In the semi-structured interviews, par-
ticipants reported that they perceived the feedback scores as positive and interest-
ing, but sometimes irritating. The design and feedback format, in the form of a 
barometer, was rated as appropriate and appealing. About half of the participants 
reported that they had not voluntarily used the feedback to change their strategy 
or behaviour. One person reported that he or she was motivated by the score and 
perceived it as promoting regarding the concentration. Some participants ex-
pressed a need for detailed clarification of the underlying calculations and 
measures used for the scores.  

4. Discussion 

Our results show that machine learning algorithms can distinguish different affec-
tive-emotional states and levels of cognitive load. There was no difference between 
the algorithms used. The finding that the hypothesized induced difficulty and va-
lence (based on the experimental condition) can be learned and predicted with 
high accuracy from the neurophysiological data is of particular relevance; however, 
we could not predict the subjectively perceived difficulty and valence reported by 
participants in the questionnaires. This observation highlights the importance of 
objective methods for learner state recognition. Modulating effects, such as social 
desirability, processes of cognitive dissonance for self-image maintenance, or the 
capacity and ability to reflect on past experiences, can bias the self-assessment. 
These modulations are not represented in the neurophysiological signals measured 
simultaneously during the task and stimulus processing. The observed discrepancy 
between neurophysiological-estimated and subjectively perceived states could have 
relevant effects on the learner’s trust in and, thus, the acceptance and effectiveness 
of a neuro-adaptive tutoring system. Future research on the integration of this dis-
crepancy and the design of a tutoring system that is experienced as adequate is 
necessary. Furthermore, further research is needed to identify a suitable ground 
truth and associated calibration tasks that allow training of a tutor system.  
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For the implementation of neuro-adaptive tutoring systems in naturalistic environ-
ments with the goal of a high learner’s acceptance of the systems, accuracy, and 
reliability of the online estimation of cognitive and affective-emotional states is of 
great importance. Even though offline methods could distinguish different affec-
tive-emotional states and levels of cognitive load with high accuracy, online state 
detections still showed a large variance in the accuracy of the detected states. To 
assess negative evaluation of inaccurate feedback, we examined the effect of in-
consistent, inadequate as well as consistent, accurate feedback on a neural and be-
havioural level. Interestingly, we did not observe a negative effect of inconsistent 
or inaccurate feedback on participants' performance. However, this could be partly 
due to the small sample size of the exploratory study.  

5. Conclusion 

Our neurophysiological-based approach to capture learners' affective-emotional 
and cognitive states contributes to the development of closed-loop neuro-adaptive 
tutoring systems. These systems allow to monitor the learner's state, provide feed-
back, and adapt their system and learning parameters to individual abilities, needs 
and currently available resources (e.g., in terms of concentration). Optimal adap-
tation to the learner can contribute to an effective and positive learning experience. 
The design and validity of feedback is a major challenge for the effectiveness of 
feedback on performance-related measures. Therefore, influences of feedback for-
mats should be explored in future research. In a next step, we aim to develop a 
methodology for robust detection and prediction of affective-emotional and cog-
nitive states of learners during the learning and training session. This will require 
appropriate signal processing and artifact cleaning steps (filters, component anal-
yses, etc.) to pre-process the signals, as well as computationally efficient, robust 
classifiers for real-time prediction of the experienced mental states (see Figure 06).    

 

Figure 06: Outlook of a neurophysiological-based learner state recognition during a learning or train-
ing task. 
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